
PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 1

Modificación de brazo 7 DOF del
Boston Dynamics Spot

Marcelo Contreras, Estudiante, UTEC, Alejandro Del Rı́o, Estudiante, UTEC, Cesar Guillen, Estudiante, UTEC,
y Andrea Chu, Estudiante, UTEC

Abstract—El presente proyecto se ha encargado de modificar
el brazo robótico del Spot Robot de Boston Dynamics para
aumentarle una articulación prismática, obteniendo un robot
manipulador de 7 grados de libertad para amplificar el espacio
operacional y alcanzable. Se definieron nuevas dimensiones y en
base a ellas, se obtuvieron los parámetros Dehavit - Harten-
berg. El robot modificado fue modelado mediante Inventor,
generando un modelo enmallado que fue exportado como archivo
formato URDF para utilizarse en ROS. Fueron definidas tres
configuraciones de prueba que fueron visualizadas mediante
Rviz para cinemática directa, cinemática inversa de posición
y control cinemático de posición. También, fue obtenido el
modelo dinámico del robot a través de la librerı́a RBDL y
fue empleado para dos esquemas de control dinámico. Tanto
el control cinemático como dinámico logró seguir las referencias
con una norma de error menor a 0.0001.

Index Terms—Spot, Robotic Arm, 7 DOF, URDF, ROS,
Gazebo, Rviz, RBDL, FK, IK, Control

I. INTRODUCCIÓN

EL 2016 fue un año importante para la robótica industrial
y la investigación de robots cuadrúpedos por el anuncio

del Spot Robot de la empresa Boston Dynamics [7] [2] [5].
Este robot muestra caracterı́sticas en su locomoción ya vistas
anteriormente por otros robots como Anymal del ETH Zurich
[8] o robot Cheetah del MIT [3] pero logró compactarlas en
un robot sumamente ágil de tamaño mediano y mostrando
prestaciones de mayor calidad. Spot representa una oportu-
nidad por integrar a los robots móviles en industrias como
minerı́a, petroquı́mica, energı́a, etc; gracias a su capacidad de
movilidad y localizarse en tiempo real [2]. Para mejorar el
desempeño de esta tarea, se le agregó un brazo de 6 DoF
con un gripper para darle mayor autonomı́a al abrir puertas o
mover obstáculos. Aplicaciones más especı́ficas de Spot junto
a su brazo son el monitoreo ante fallas de equipos industriales
con recolección de data a través de cámaras integradas, mapeo
de terrenos peligrosos o inaccesibles, transporte de cargas
pequeñas en terrenos difı́ciles para la locomoción por ruedas
como escaleras [4].

Este proyecto busca ampliar las capacidades del Spot Arm
al agregarle un grado de libertad prismático para aumentar el
espacio operacional alcanzable. Ası́ mismo, para establecer
posición y orientación en el espacio 3D solo se necesitan
6 DoF. Al incrementar su número, ahora el robot dispone
de múltiples configuraciones que le permitan llegar hasta su
objetivo al tener un DoF extra. Ello es de gran ayuda ante la
presencia de obstáculos en entorno dinámicos donde se deben
generar configuraciones alternativas en tiempo real.

Fig. 1: Robot Spot con su brazo de 6 DoF [1]

II. COMPONENTES

La estructura del modelo modificado está conformada por
una cadena cinemática de 4 articulaciones de revolución, 1
prismática y 2 adicionales de revolución, lo cual forma una
estructura antropomórfica. Como gripper, el robot posee una
garra mecánica de 2 dedos con un dedo fijo como soporte de
agarre.

Fig. 2: Spot arm original [1]

En el apartado de sistemas de actuación, Spot Arm Mod
alimenta sus sistemas eléctricos con baterı́as LiPo montadas
en la base móvil. Los principales componentes eléctricos son
servomotores DC que dentro tiene una etapa de potencia
integrada y son directamente manipulados por protocolo de
comunicación UART (RS-485). Un posible modelo son los
Dynamixel XL-320 con control PID de bajo nivel por su
compacticidad y calidad. Para aumentar su torque, se utiliza
engranajes planetarios en las articulaciones revolución. Adi-
cionalmente, para lograr el movimiento lineal de la articu-
lación prismática, se acopla un mecanismo ball screw a uno
de los servomotores.

La percepción sensorial del robot está constituida por galgas
extensométricas en el efector final para sensado de fuerza y

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 2

Fig. 3: Dynamixel XL-320

una cámara instalada en la base móvil. Los servomotores de
por sı́ ya tienen encoders instalados que no son manipulados
por los usuarios en virtud del control de bajo nivel de los
servos. Aunque es posible que Spot tenga IMUs y LiDAR en
su base, estos no aporta información relevante para el brazo
de 7 DoF.

Finalmente, se ha optado por un control descentralizado de
los 7 DoF para que no solo el control, sino la percepción y
localización del robot puedan ser ejecutadas en alto nivel por
una single board computer en vista que ya existe un control de
bajo nivel para cada actuador. La placa seleccionada ha sido
la Jetson TX2 con un NVIDIA Denver 2 Dual Core, ARM
Cortex Quad Core, 8 GB LPDDR4 de memoria y una GPU
Nvidia Pascal capaz de hacer procesamiento de video de la
cámara.

Fig. 4: Arquitectura de Spot Arm propuesta

III. MODELO DEL ROBOT

Para representar el robot en ROS y poder simularlo o
visualizarlo, primero se debe definir un modelo de tipo URDF
(Unified Robot Description Format). Primero, se modeló el
Spot Arm usando Fusion360(Inventor), tomando en cuenta las
medidas reales del robot con las modificaciones aplicadas. Al
crear este modelo 3D, se definieron diferentes cuerpos por
cada articulación. Asimismo, se establecieron los ejes por los
que podrán rotar o desplazarse.

Fig. 5: Spot Arm modelado en Fusion 360

Se utilizó un repositorio público de Github [9] para exportar
el modelo de Fusion 360 a un URDF. Al realizar esto se
crearon los archivos de tipo ’.urdf’, ’.xacro’ y ’.launch’. En el
archivo Spot Arm Export.xacro se definen las propiedades de
cada articulación, como la longitud, masa e inercia. Asimismo,
al generar el URDF se creó un enmallado para cada elemento
del modelo.

Fig. 6: Mesh en componentes del robot

Para poder visualizar el robot en Rviz se creó el archivo
display.launch. Este archivo muestra el programa y permite
publicar al nodo joint state publisher para manipular cada
articulación. En caso se intente publicar los valores de las
articulaciones desde un script externo, se tendrá que eliminar
el nodo joint state publisher del archivo display.launch para
evitar que se publiquen desde dos instancias diferentes.

Fig. 7: Spot Arm visualizado en Rviz

De igual manera, se creó el archivo gazebo.launch, el cual
permite simular el modelo en Gazebo.

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 3

Fig. 8: Spot Arm simulado en Gazebo

IV. CINEMÁTICA DIRECTA E INVERSA

Para el establecimiento del modelo cinemático del robot
en estudio, es necesario establecer uniformidad sobres las
pruebas a realizar. En ese sentido, se ha seleccionado un total
de tres configuraciones a manera de vectores articulares q
para que sean asignados al modelo del robot y puedan ser
evaluados desde los distintos procedimientos requeridos. Para
la cinemática directa se empleará la convención de Denavit-
Hartenberg estándar, mientras que para la cinemática inversa
se compararán los resultados de dos métodos numéricos, el de
Newton-Raphson y el descenso de Gradiente.

Tomando en consideración los lı́mites articulares que han
sido establecidos por Boston Dynamics, se han definido los
siguientes vectores articulares para poner a prueba en la exper-
imentación computarizada que permite comprobar la correcta
operación del código trabajado:

1) q = {2.18, 2.86, 1.93, -2.77, 0.04, 0.8, 0.38}
2) q = {0.36, 2.89, 2.40, -1.96, 0.03, -0.04, -2.05}
3) q = {1.85, 2.93, 1.76, -1.55, 0.04, -0.35, 0.33}

A. Cinemática directa

En primer lugar, se requiere establecer la cadena cinemática
del robot a manera de expresiones matemáticas que vinculen
sus articulaciones y eslabones de manera coherente. Para esto,
siguiendo la convención estándar de Denavit-Hartenberg, los
sistemas de referencia a lo largo del brazo analizado resultan
del modo que se muestra a continuación:

Fig. 9: Asignación de sistemas de referencia de acuerdo con
la convención estándar de Denavit-Hartenberg

Los parámetros correspondientes a la asignación de ejes
mostrada en la figura 9 se indican en la tabla I.

TABLE I: Parámetros DH estándar

di θ a α
1 0.140137 q 0+π 0 π/2
2 0 -q1+π 0.3385 0
3 0 q2+π/2 - 0.09734 π/2
4 0 q3 0 0
5 q4+0.3833 π 0 π/2
6 0 q5+π 0 π/2
7 0.275027 q6+π -0.05025 0

Una vez definidos los parámetros, cabe resaltar que la
finalidad de estos consiste en la obtención de matrices de
transformación homogénea que relacionen los sistemas de
referencia asignados entre sı́. Al multiplicarse en secuencia,
construyen la cadena cinemática presente en el robot en
estudio para alcanzar el efector final comenzando en el sistema
de referencia de la base. Para la convención estándar de
Denavit-Hartenberg, existe una expresión general que define
la construcción de la matriz de transformación homogénea que
relaciona dos sistemas consecutivos a lo largo del robot.

i−1Ti(θi,di,αi,ai) =


cos(θi) − cos(αi) sin(θi) sin(αi) sin(θi) ai cos(θi)
sin(θi) cos(αi) cos(θi) − sin(αi) cos(θi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (1)

Con la expresión general de la matriz de transformación
expuesta en 1, se puede implementar el código en Python
para realizar el envı́o del vector articular deseado al modelo
del robot. Para comprobar el correcto cálculo de la cinemática
directa, se realizó la visualización en Rviz. Para diferentes con-
figuraciones, se colocaron marcadores para cada eje definido
en la convención Denavit-Hartenberg (en verde) y para el eje
final (en amarillo).

Fig. 10: Cinemática Directa en Rviz

Por medio de ambas figuras anteriores, tanto 10 como 11,
se aprecia la generación de marcadores en los puntos en los
que han sido asignados los sistemas de coordenadas siguiendo
la distribución espacial planteada en 9. Lo siguiente consiste
en entregar los valores articulares que fueron definidos al
comienzo de esta sección y corroborar que el robot adopte
dicha configuración sin complicaciones. Ası́, se puede contin-
uar con el estudio del robot para entregar un valor deseado en
el espacio operacional en lugar del de configuración.

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 4

Fig. 11: Cinemática Directa en Rviz

(a) 1ra configu-
ración

(b) 2da configu-
ración (c) 3ra configu-

ración

Fig. 12: Visualización de las configuraciones articulares
obtenidas por medio de cinemática directa

A partir de la correcta ejecución del código, se visualizan
las tres configuraciones con las que se realizarán los ensayos
posteriores respecto a cinemática inversa, control cinemático
y dinámico para el robot en estudio. La operatividad del
programa ha quedado verificada hasta este punto. Sin embargo,
hay un paso previo antes de continuar con la sección corre-
spondiente a cinemática inversa. Dado que debe entregarse al
algoritmo un punto en el espacio para que sea alcanzado por
el efector final, se extrae de la última columna de las matrices
de transformación homogénea obtenidas las coordenadas x, y
y z de los tres puntos deseados a ser verificados.

Fig. 13: Matriz de transformación homogénas devuelta para la
primera configuración de prueba

Siguiendo el procedimiento descrito para aprovechar los
resultados de la presente sección, la lista de puntos deseados
comprende lo siguiente:

1) Xd = {0.21; -0.124; 0.882}
2) Xd = {0.188; 0.123; 0.659}
3) Xd = {-0.011; -0.143; 0.886}
Con la lista de puntos deseados disponible y sabiendo que

el cálculo de cinemática directa opera apropiadamente para el
envı́o de la configuración articular al robot, se continúa con la
revisión de la cinemática inversa.

B. Cinemática inversa

En lo que respecta al análisis de cinemática inversa, se
han realizado pruebas con dos algoritmos numéricos para
comprobar los resultados deseados. Estos dos algoritmos son
el de Newton-Raphson y el descenso de Gradiente. Para la
aplicación de ambos, se requiere el cálculo del correspondiente
Jacobiano del robot manipulador en estudio. Esta matriz corre-
sponde a la razón de cambio para cada una de las coordenadas
x, y y z respecto al vector articular q.

J(qk)
=

∂f(qk)

∂q
∈ Rn×m (2)

A partir de 2, se sabe que el robot en análisis presenta como
Jacobiano una matriz de dimensiones 3×7, ya que cuenta con
un vector articular que va desde q0 hasta q6. Ası́, se trata de un
robot de 7 grados de libertad en el espacio tridimensional. De
este modo, se sabe que no se cuenta con una matriz cuadrada,
lo que hace necesario el uso de su correspondiente pseudo-
inversa de Moore-Penrose para los algoritmos a utilizar para
la presente sección.

Existen dos formas de conseguir el cálculo de los valores
que conforman esta matriz y trabajar con ellos. Debido al
tipo de resultado que se busca y a que se trata de una
implementación de código de tipo computacional, se opta por
el cálculo numérico del Jacobiano. Esta aproximación permite
evaluar la matriz sin necesidad de contar con la totalidad
de las expresiones matemáticas simbólicas que se obtienen
de realizar el producto de las matrices de transformación
homogénea de la cadena cinemática completa.

La expresión que define el Jacobiano numérico consta de
la utilización de un incremento articular que es aplicado
a las articulaciones conforme se progresa en la aplicación
del método numérico escogido. Por tanto, se consigue una
expresión semejante a la utilizada para llevar a cabo la
integración de Euler. Esta ecuación está dada del siguiente
modo:

∂X
∂q1

≈
X(q+δq1) − X(q)

δq1
(3)

En 3, cabe resaltar que X hace referencia a una posición en
el espacio tridimensional con las tres coordenadas correspon-
dientes. Además, para el modo en el que se ha planteado, el
resultado de dicho cálculo corresponde a una de las columnas
de la matriz que constituye el Jacobiano del robot. El proced-
imiento se repite iterativamente para completar el recorrido de
todo el vector articular.

Habiendo definido este criterio para la obtención del Jaco-
biano del robot en estudio, se procede a describir las carac-
terı́sticas principales de los métodos numéricos a ser evaluados
para mostrar los resultados conseguidos para el modelo del
Spot Arm. De igual manera, es importante mencionar que la
implementación de este cálculo está dada en la función de
Python jacobian Spot que forma parte del programa adjunto
a manera de repositorio de GitHub.

1) Método de Newton-Raphson: Debido a que se está
empleando como forma de resolver el problema de cinemática
inversa, el método numérico en cuestión busca la solución f(q)

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 5

(a) 1er punto de-
seado

(b) 2do punto de-
seado (c) 3er punto de-

seado

Fig. 14: Obtención de cinemática inversa con el método de
Newton-Raphson con configuración inicial nula

tal que se cumpla la condición Xd − f(q) = 0. Esto implica
que el resultado sea un vector articular con valores dados
que obtenga como resultado de posición del efector final una
posición deseada.

A partir de emplear una aproximación de primer orden de
Taylor, la ecuación de actualización iterativa para el método
es la que se muestra a continuación:

qk+1 = qk + J#
(qk)

·
(
Xd − f(qk)

)
(4)

Para la ecuación anterior, J#
(qk)

representa la pseudo-inversa
del Jacobiano. Este concepto requiere ser aplicado debido a
que no se cuenta con una matriz cuadrada. Por tanto, esta
no tiene inversa. Sin embargo, puede ser directamente calcu-
lada mediante la función disponible en numpy denominada
numpy.linalg.pinv. Más adelante, se observará la posibilidad
de emplear la pseudo-inversa amortiguada. Sin embargo, esta
resulta útil dentro de la aplicación del control sobre el robot.
Cuando se trata de evaluar posiciones especı́ficas como en esta
sección, se aprovecha la función ya mencionada.

Es importante mencionar que, para este método, el resultado
no es único. Más aún, si se trata del espacio de trabajo diestro
del robot, se contará con multiplicidad de soluciones dado
que la referencia consta solamente de una posición que se
busca alcanzar. Esto se ve reflejado al momento de obtener
los primeros resultados con la aplicación del método.

Por medio de la figura 14, se observa que el método no ha
alcanzado el punto deseado con el vector articular calculado.
Principalmente, se muestran estas capturas para evidenciar que
las articulaciones de revolución adoptan valores viables, pero
que finalmente impiden que se alcance el punto final debido a
que se requiere un valor negativo (retroceso) en la articulación
prismática que fue agregada al robot. Por tanto, el valor no
puede ser asignado al modelo, ya que es conflictivo con su
estructura. Las pruebas anteriores han sido realizadas con una
configuración inicial de cero para cada uno de los valores del
vector articular. Se obtiene convergencia del método pues se ha
impreso una configuración en el modelo visualizado en RViz.
Sin embargo, no es el comportamiento deseado aún.

Para la evaluación del algoritmo, es relevante tomar en
consideración que el método de Newton-Raphson obtiene
distintas soluciones dependiendo del punto de partida que sea
aplicado como referencia inicial para comenzar a buscar la
solución deseada. En esta implementación del código, se ha
optado por el criterio de parada de una norma mı́nima para el
valor del error, el cual hace que las iteraciones se detengan y

(a) 1er punto de-
seado

(b) 2do punto de-
seado (c) 3er punto de-

seado

Fig. 15: Obtención de cinemática inversa con el método de
Newton-Raphson con configuración inicial no nula

se proporcione el vector articular despejado como respuesta.
Entonces, se modificó el vector articular inicial empleado para
conseguir la variación de la respuesta final que se asigna al
modelo del robot en estudio.

La variación en el resultado es notoria. Ahora, se cuenta
con la posición deseada del efector final al conseguir la coin-
cidencia de los marcadores verde y rojo que han sido incluidos
para obtener los resultados en RViz. En los tres casos, ya no se
tiene dificultades en la asignación de valores a la articulación
prismática, ya que se extiende correctamente para alcanzar los
valores deseados con el efector final. Claramente, el vector
articular inicial está provocando la diferencia de resultados
entre ambas pruebas, ya que al comparar lo observado en 14
con lo que se tiene en 15, se aprecia que el robot en estudio
busca aproximarse de maneras diferentes al punto deseado
para el efector final. Sobre todo, con las articulaciones iniciales
de su cadena cinemática.

El nuevo vector articular asignado para conseguir el resul-
tado esperado que se visualiza en la figura 15 ha sido obtenido
a partir de las configuraciones asignadas por cinemática di-
recta, variando los decimales de las componentes del vector q
para que el robot se encuentre cercano al resultado deseado.
Efectivamente, el cambio ha sido positivo dado que en la
segunda prueba se logró que el efector final alcance las
coordenadas espaciales de Xd. Para concluir la evaluación
del método de Newton-Raphson, es pertinente exponer la
convergencia del mismo en un número de iteraciones dado
para observar el decremento en el valor del error obtenido
(distancia entre la posición deseada y la actual del efector
final).

Fig. 16: Convergencia del método de Newton-Raphson uti-
lizado para cinemática inversa

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 6

Como se observa en la figura 16, el algoritmo no requiere
demasiadas iteraciones para alcanzar un resultado. Le ha
representado un mayor costo computacional determinar el
vector articular deseado al comenzar desde la configuración de
solamente ceros. Lógicamente, esto se debe a que el efector
final está más lejos de la posición en la que se busca que se
encuentre. Asimismo, las articulaciones están también relati-
vamente lejanas de los valores finales. Respecto a las gráficas
de la segunda fila, donde se tiene una configuración inicial cer-
cana a la deseada, no se alcanza a observar el comportamiento
de convergencia cuadrático. Sucede tan rápidamente que basta
con una sola o máximo dos iteraciones para conseguir el vector
articular deseado. Este es el motivo de que las gráficas no sean
tan representativas del comportamiento cuadrático que sı́ se
aprecia de mejor forma en la primera fila de gráficas.

2) Método del descenso de Gradiente: De manera seme-
jante a como se procedió con el método de Newton-Raphson,
también se ha llevado a cabo la prueba del método del
descenso de Gradiente. Su finalidad es la misma, ya que trabaja
en base a un error consistente en la diferencia presente entre
la posición actual y deseada del efector final. Sin embargo, no
utiliza una aproximación de primer orden de Taylor, sino que
utiliza el gradiente de una función escalar del error. Con esto,
la búsqueda de la solución al problema de cinemática inversa
consiste en continuar en la dirección opuesta al máximo
incremento (gradiente) del error, para ası́ conseguir el máximo
decremento del mismo.

A partir de lo anterior, la expresión para su actualización
iterativa del vector articular comprende la aplicación de un
valor constante multiplicado a la transpuesta del Jacobiano,
siendo este el tamaño de paso a ser evaluado por medio del
método:

qk+1 = qk + α · JT
(qk)

·
(
Xd − f(qk)

)
(5)

Este segundo método numérico para el problema de
cinemática inversa resulta menos costoso para la computadora
debido a que elimina la necesidad del cálculo de la pseudo-
inversa y por lo tanto, la posibilidad de llevar el robot a singu-
laridades por una inversa mal comportada. Además, como se
está empleando un Jacobiano obtenido de manera numérica
y no analı́tica, esto simplifica aún más las operaciones que
debe realizar la computadora. Sin embargo, esto no significa
que se trate de una alternativa más eficiente directamente.
Su principal inconveniente es su comportamiento lineal de
convergencia, lo que lo hace más lento en comparación con
el método de Newton-Raphson.

Con la finalidad de mantener la uniformidad de las pruebas
realizadas para los algoritmos empleados, se presentan los
resultados evaluados de la misma forma que para el método
de Newton-Raphson. Primero, se aplica una configuración de
solamente ceros en el vector articular. Segundo, se utiliza
como referencia los vectores articulares deseados. Tercero, se
exponen las gráficas de convergencia con los valores de error.

En el resultado inicial, es decir, al partir de una config-
uración con solamente ceros en los valores articulares, el
modelo encuentra el mismo problema que para el método de
Newton-Raphson. El único modo de alcanzar efectivamente

(a) 1er punto de-
seado

(b) 2do punto de-
seado

(c) 3er punto de-
seado

Fig. 17: Obtención de cinemática inversa con el método del
descenso de Gradiente con configuración inicial nula

(a) 1er punto de-
seado

(b) 2do punto de-
seado

(c) 3er punto de-
seado

Fig. 18: Obtención de cinemática inversa con el método del
descenso de Gradiente con configuración inicial no nula

el punto deseado para el efector final es generando un valor
negativo para la articulación prismática. Se sabe que esto
resulta inviable para el robot en estudio. Por tanto, se realiza
nuevamente la prueba del mismo programa, pero con la
asignación de un vector articular inicial que se encuentre más
cercano al resultado final que se podrı́a obtener de modo
apropiado respecto a la estructura funcional del robot.

Una vez más, al tomar como referencia los vectores artic-
ulares empleados para cinemática directa y acercar al robot a
dicha configuración desde el principio, el método opera sat-
isfactoriamente. Ambos marcadores coinciden en su posición
en el espacio y se respetan todos los lı́mites articulares en
la solución resultante. En ese sentido, la influencia del vector
articular inicial que es asignado al algoritmo tiene un impacto
relevante en la obtención de los resultados deseados. Además,
se aprecia que la única generación de obstáculos está dada
por la inclusión de una articulación de un tipo distinto a las
demás, siendo q4 la única articulación prismática, mientras que
el resto son de revolución.

A continuación, se exponen las gráficas obtenidas en torno
a la convergencia del método para los seis casos evaluados,
tanto con la configuración inicial compuesta solamente por
ceros, como la que se encontró desde el principio más cercana
a lo deseado.

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 7

Fig. 19: Convergencia del método del descenso de Gradiente
utilizado para cinemática inversa

La diferencia principal para los resultados mostrados en 19
comprende la mayor cantidad de iteraciones para conseguir
el resultado deseado. Para este método, también se ha em-
pleado el criterio de error de norma mı́nima para detener el
algoritmo y que devuelva como respuesta un vector articular
determinado. Si bien pareciera conseguirse una curva no lineal,
en realidad lo que sucede es una visualización de este estilo
debido a la cantidad de puntos disponibles para la gráfica. En
el caso del método de Newton-Raphson, como se mencionó
al comentar la figura 16, no se dispone de muchos puntos
pues la convergencia es más rápida en comparación de ambos
métodos empleados. En cambio, el comportamiento suavizado
de la curva de error está dado de ese modo justamente por la
mayor cantidad de iteraciones requeridas, lo que genera más
puntos para el gráfico y provocan la formación de una curva
más suave.

Habiendo realizado las correspondientes pruebas con am-
bos métodos, se concluye la sección correspondiente para el
modelo cinemático del robot en estudio. Se ha comprobado la
operatividad del algoritmo para despejar la cinemática directa,
lo que verifica el correcto planteamiento de los parámetros
de Denavit-Hartenberg y la realización del modelo en RViz.
Luego, se ha comprobado la influencia del vector articular
inicial que es proporcionado a los algoritmos de cinemática
inversa, ya que la multiplicidad de soluciones puede acarrear
algunas dificultades para alcanzar el resultado deseado. Sobre
todo, vale la pena observar si los tipos de articulación del robot
son todos de la misma naturaleza y el cómo se afecta el cálculo
del resultado en cuanto se aplican combinaciones de los mis-
mos. Una vez ha quedado establecido el modelo cinemático,
se procede a aplicar control sobre el comportamiento del brazo
del Boston Dynamics Spot con el que se está trabajando.

V. CONTROL CINEMÁTICO

Este tipo de control utiliza la cinemática diferencial para
calcular la primera derivada temporal de los valores articulares
para luego integrarlos y obtener una nueva configuración.
Primero se define el vector de posición actual y el vector de
posición deseada:

x =

xy
z

 , xd =

xd

yd
zd


El error por tanto se definirá como e = x - xd, y su derivada

temporal, dado que xd es constante:

ė = ẋ (6)

De la definición del Jacobiano analı́tico sabemos que ẋ =
Jq̇, conociendo la ecuación 6 y resolviendo para q̇, obtenemos:

q̇ = J#ė (7)

donde J# es la pseudo-inversa del Jacobiano. Finalmente,
usamos una ganancia proporcional k para definir la ley de
control:

ė∗ = −ke (8)

Como se puede observar, este método tiene como resultado
q̇, por lo que será necesario integrar por el método de Euler con
el periodo de actualización y el q pasado para obtener la nueva
configuración articular. Dicho periodo fue de 0.005 segundos
debido a que la frecuencia de actualización fue de 200 Hz.
Asimismo, se definió como valor aceptable para la norma del
error 0.0001 m. Este valor debe ser alcanzado dentro del lı́mite
de 10000 iteraciones que se fijó para el algoritmo. Además,
para cubrir también los casos de singularidad se añadió un
condicional que implementa la pseudo-inversa amortiguada del
Jacobiano si el rango de este es menor a 3. Esta tiene la forma:

J+ = JT (JJT + ρ2I)−1 (9)

donde se usó para ρ un valor de 0.01. Con el fin de
evitar publicar configuraciones fuera de los lı́mites articulares,
se implementó también una serie de condicionales que solo
actualizan cada valor del vector q si los nuevos valores están
dentro del rango posible.

Fig. 20: Diagrama Control Cinemático

En la figura 20 se puede observar la definición del diagrama
cinemático, donde FK(q) denota la cinemática directa en
función de q descrita en la sección anterior.

A. Implementación del control cinemático

Para probar el rendimiento del algoritmo presentado se us-
aron las mismas tres configuraciones de la cinemática directa.
Con el método de prueba y error, se encontraron los valores
de k más bajos para que el robot llegue a la posición deseada

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 8

dentro de las 10000 iteraciones. Estos valores fueron bastante
altos principalmente debido a las limitaciones impuestas por
los lı́mites articulares.

TABLE II: Resultados del control cinemático

Caso 1 Caso 2 Caso 3
k 12 5 10

Iteraciones 9065 9046 9271

En la figura 21 se observan las gráficas de los valores
articulares comparados con la referencia inicial a lo largo del
tiempo.

Fig. 21: Cambio de las variables articulares con el control
cinemático en la configuración 1.

Cómo se puede ver, si bien todos los valores articulares con-
vergen, estos no siguen la referencia inicial. Esto se debe a que
el control cinemático se realiza sobre el espacio operacional y
no el articular. Dado que solo se está realizando el control
de posición y el robot es de 7 grados de libertad, existen
infinitas soluciones para unas coordenadas determinadas. Si
bien la configuración uno fue usada para generar la posición
final, el robot puede usar otra configuración para llegar a la
misma posición. Además, en el gráfico de la articulación q6 se
ve como actúa el condicional de los lı́mites articulares, pues
esta dejó de variar en un valor cercano a 1.047 rads, su lı́mite
superior.

El éxito del control por posición es mejor visualizado por
las gráficas que registran el cambio en las coordenadas x, y,
z del efector final.

Fig. 22: Cambio de posición con el control cinemático en la
configuración 1.

TABLE III: Parámetros de desempeño configuración 1

x y z
%OS 0 48 29

ess (m) 0.000023 -0.000014 0.000096
Ts (s) 22 28 30

Como se puede observar, las gráficas no tienen un compor-
tamiento estable y varı́an ampliamente. Esto se debe princi-
palmente a los lı́mites articulares impuestos. Asimismo, en el
caso de la configuración 1 se puede ver un cambio muy rápido
en x, y y z al inicio del movimiento. Este es consecuencia del
alto valor de k usado en esta configuración.

Fig. 23: Cambio de posición con el control cinemático en la
configuración 2.

TABLE IV: Parámetros de desempeño configuración 2

x y z
%OS 0 108 77

ess (m) 0.000054 -0.000034 0.000077
Ts (s) 30 32 30

Para la configuración 2 se usó un valor de k mucho menor,
por lo que el movimiento es mucho más suave.

Fig. 24: Cambio de posición con el control cinemático en la
configuración 3.

TABLE V: Parámetros de desempeño configuración 3

x y z
%OS 0 86 31

ess (m) -0.000001 -0.000019 0.000098
Ts (s) 2 30 30

Se puede notar que en todos los casos el robot avanza
inicialmente muy rápido pero finaliza el movimiento de man-
era lenta. Este comportamiento es consecuencia directa de
los métodos que hemos utilizado y es la razón por la que
se necesitaron valores tan altos de k. El control cinemático
esta definido por el error, y siempre va a buscar reducir el

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 9

mismo. Es decir, este nunca le va a indicar al robot que pase
a una posición que aumente el error respecto a la referencia.
De esta manera, el robot no puede ”esquivar” una posición
fuera de su espacio operacional alejándose temporalmente de
la referencia. Esto hace que siempre busque la ruta que reduzca
constantemente el error, aunque esta sea más lenta.

Finalmente, también es posible visualizar el control con los
markers verde y rojo en el entorno de RViz. Como se puede
observar, ambas esferas, la roja indica posición deseada y la
verde posición actual, están superpuestas debido a que ocupan
la misma posición.

Fig. 25: Control cinemático en RViz.

B. Configuraciones singulares

Para hallar las configuraciones singulares del robot se
debió hallar el Jacobiano geométrico pues la aproximación
del Jacobiano analı́tico realizada no tendrá los resultados
exactos. Asimismo, por simplicidad se tomaron únicamente
las configuraciones singulares de posición y se asumió que las
cuatro primeras articulaciones definen la posición del efector
final. El Jacobiano geométrico tiene la siguiente forma:

Jg =
[
z0 × p0,4 z1 × p1,4 z2 × p2,4 z3 × p3,4

]
donde zi es el eje de la articulación i+1 y pi,4 es la distancia

del origen del sistema de referencia i al origen sistema de
referencia 4, ambos expresados en el sistema de referencia 0.
Cómo se puede ver Jg depende de q1, q2, q3 y q4, y es una
expresión trigonométrica compleja. Para que se la considere
una configuración singular, esta tiene que cumplir la siguiente
expresión:

det(JgJ
T
g) = 0

De manera experimental se probó con distintas
configuraciones y se dio que las siguientes cumplen
con la expresión:

• q = [0, π
2 , 0, 1]

• q = [π2 ,
π
2 , 0, 2]

Estos resultados se explican en que ambos ponen al efector
final en el lı́mite del espacio operacional. Además, q4 no afecta
la posición por lo que esta no afecta el rango del Jacobiano. Si
q3 es distinto de 0, en cambio, el efector final sale del lı́mite
y el determinante da distinto de 0.

Fig. 26: Configuración singular q = [0, π
2 , 0, 1, 0, 0, 0]

Fig. 27: Configuración singular q = [π2 ,
π
2 , 0, 2, 0, 0, 0]

VI. DINÁMICA Y CONTROL DINÁMICO

A. Dinámica

La expresión general que puede representar la dinámica de
un robot puede tomar la forma matricial siguiente según [11]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (10)

donde M(q) es la matriz de inercia, C(q, q̇) la matriz de
Coriolis, g(q) el vector de gravedad y τ el torque resultante.
Con robots de pocos DoF se puede interpretar rápidamente la
dinámica inspeccionando los arreglos calculados, sobretodo la
matriz de inercia para verificar si hay términos cruzados entre
los DoFs que tiene un impacto notable para ciertos esquemas
de control. No obstante, este análisis comienza a complicarse
y pierde sentido fı́sico para robots de más DoF. No obstante,
la expresión sigue siendo de ayuda para el control dinámico,
articular, operacional o de fuerzas. Por otro lado, es posible
representar el modelo dinámico mediante espacio de estados,
dejando de lado la forma matricial anterior.

Los dos métodos más conocidos para la obtención de la
ecuación dinámica son Euler-Lagrange y Newton-Euler [11].
El primero se basa en el principio de mı́nima acción que
obtiene de manera simbólica las expresiones dinámicas. Esta
forma no es computacionalmente eficiente para robots de var-
ios DoFs porque redunda en el planteamiento de operaciones y
no es recursivo. Además, deben replantearse para cada tipo de
robot diferente. El segundo es un método algorı́tmico recursivo
hacia adelante para el cálculo de velocidades y aceleraciones, y
hacia atrás para los torques y fuerzas. Es sumamente eficiente
con un costo computacional de O(n) porque no contiene

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 10

iteraciones anidadas. Inclusive, el método permite extraer cada
matriz o vector dinámico individualmente, en vista que se
necesitan para ciertas leyes de control.

Existen paquetes o librerı́as que tienen implementaciones
del algoritmo Newton-Euler con ciertas optimizaciones, que
terminan por denominarlo Recurrent Newton-Euler Algorithm
(RNEA). Dentro de estas se encuentran Pinocchio y RBDL.
Este trabajo hace uso de RBDL con la interfaz Cython para
trabajar scripts nativos de C++ en Python [6].

Entrando en detalles, la obtención de las matrices y vec-
tores dinámicos puede obtenerse manejando algebraicamente
la expresión dinámica y observando los valores de torques re-
sultantes que seran igual al array deseado directamente o luego
de unas operaciones adicionales. Los valores de los vectores
podrán ser retornados por la función InverseDynamics() que
calcula el vector de torques.

A continuación, se muestra las cancelaciones de q̇ y q̈ nece-
sarias para obtener q(q), C(q, q̇) y M(q) respectivamente.
Adicionalmente, la matriz M(q) no puede ser recuperada
directamente; se debe calcular los valores de cada columna al
igualar q̈ a una columna i de la matriz identidad. Ese arreglo
es representado por ei.

M(q)��̈q + C(q, q̇)��̇q + g(q) = τ

M(q)��̈q + C(q, q̇)q̇ = τ − g(q)

M(q)ei + g(q) = mi + g(q) = τ

A partir de ahora, la ecuación 10 será reescrita como 11 para
simplificar el vector de gravedad y Coriolis como una sola
cantidad denominada vector de efectos no lineales. Ası́ mismo,
el torque resultante sera igualado a una ley de control en
vista que se considera la inexistencia de torques externos o
de fricción.

M(q)q̈ + b(q, q̇) = τ = u (11)

Con esta nueva estructura, se abre la posibilidad de utilizar
otros métodos para la obtención de M y b. RBDL tiene im-
plementado nativamente el algoritmo Composite Rigid Body
Algorithm (CRBA) para calcular M y NonlinearEffects() para
b. Son funciones optimizadas y que dan mismos resultados que
InverseDynamics. Por lo tanto, esas funciones serán empleadas
dentro de este trabajo para el cálculo de los arrays en cada
configuración.

A manera de ejemplo, se calcularán los arrays M ,b,τ para la
configuración q = {-1.24, 1.46, 1.62, -0.24, 0.03, -0.40, -3.74}
con velocidades articulares q̇ = {0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
0.5} y aceleraciones articulares nulas. Los resultados fueron:

M =



1.295 0.009 −0.001 −0.082 −0.021 −0.042 0.01
0.009 2.732 −1.373 0.011 −2.181 −0.217 0.005
−0.001 −1.373 1.113 −0.011 0.592 0.1750 −0.004
−0.082 0.011 −0.011 0.017 0 0.002 −0.004
−0.021 −2.181 0.592 0 4.7 −0.136 −0.004
−0.042 −0.217 0.1750 0.002 0.136 0.049 −0.002
0.01 0.005 −0.004 −0.004 −0.004 −0.002 0.003



b =



0.479
32.068
−27.058
0.189

−10.288
−3.202
0.067


, τ =



0.479
32.068
−27.058
0.189

−10.288
−3.202
0.067


Algunas observaciones interesantes se puede obtener de

los arrays generados para comprobar que 10 se cumple. La
primera es que los elementos 1,2 y 5 de la diagonal son los
mayores entre las filas y columnas respectivas, lo cual indica
que los terminos de inercia cruzados no tienen tanto impacto
en la dinámica del robot. No obstante, los elementos restantes
tienen valores fuera de la diagonal que son mayores. En ter-
minos generales, esta matriz de inercia tiene comportamiento
cruzado y no cruzado. La segunda observación es que el vector
b y τ tienen misma magnitud como consecuencia que el vector
de aceleraciones articulares es nulo y cancela la matriz M .

B. Control dinámico articular

Este tipo de control busca aprovechar las propiedades
dinámicas del robot para generar un torque que cancele ciertas
propiedades no lineales mientras impone dinámicas deseadas
que permitan seguir una referencia articular. En otras palabras,
se busca linealizar el sistema a partir de una ley de control
elegida inteligentemente [11]. Se espera que como consecuen-
cia, se logre un seguimiento de la referencia independiente de
la posición inicial y con una alta velocidad de convergencia,
superando tanto a la cinemática inversa numérica y al control
cinemático. Un posible control (torque aplicado) que puede
conseguir este objetivo se muestra en la ecuación 12.

u = M(q)y + b(q, q̇) (12)

Al aplicar este torque, se cancela el término de los efectos
no lineales. Esto impone que la ley de control requiera
saber valores precisos de q y q̇ para estimación. Un mal
modelamiento del robot llevara a un control pobre siguiendo
la ley mencionada por la falta de precisión. Por otro lado, la
matriz M está multiplicada por un vector y que se encarga
de imponer las dinámicas deseadas para el seguimiento de
referencias. Considerando los resultados prometedores del
control PD para motores y otros sistemas [11] [12], el vector
de dinámicas y puede incluir la aceleración articular deseada,
un término proporcional del error articular y uno derivativo.
En vista que el sistema es de múltiples entradas, las ganancias
Kd y Kp son matrices de dimensiones n x n donde n es la
cantidad de DoF. Al igualar los vectores q̈ y y, se consigue
establecer un error articular con dinámicas de segundo orden.

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 11

Todo este desarrollo se puede contemplar en la lista de
ecuaciones a continuación.

M(q)q̈ + b(q, q̇) = M(q)y + b(q, q̇)

q̈ = y

y = q̈d +Kd (q̇d − q̇) +Kp(qd − q)

q̈d − q +Kd (q̇d − q̇) +Kp(qd − q) = 0

ë+Kdė+Kpe = 0

Para conseguir que el error tenga un comportamiento criti-
camente amortiguado, fueron elegidas las ganancias Kp y Kd

a partir de frecuencias naturales de cada variable articular en
matrices diagonales. Ambas formas se muestran en la ecuación
13.

Kp =

w
2
1 0 0
...

. . .
...

0 0 w2
7

 Kd =

2w1 0 0
...

. . .
...

0 0 2w7

 (13)

Al final, reescribiendo la ecuación 12 con el vector y
elegido, la ley de control dinamico articular PD es igual a:

u = M(q) (q̈d +Kd (q̇d − q̇) +Kp(qd − q)) + b(q, q̇)
(14)

utilizando un error articular igual a :

e = qd − q (15)

La implementación de esta ley de control se puede resumir
en el diagrama de control en la figura 28 donde se muestran
todos los bloques necesarios, entradas y salidas.

Fig. 28: Diagrama Control dinámico PD Articular

A manera de comprobación de la formulacion anterior, se
hicieron testeos del control en ROS con la libreria RBDL para
las 3 configuraciones mencionadas en los apartados anteriores
a partir de la configuración articular nula y visualizados en
Rviz. Se tuvieron como criterios de control el error en estado
estacionario (ess), porcentaje de sobreimpulso (%OS) y tiempo
de establecimiento. En fig. 29 se puede comprobar que Spot
Arm logra llegar a la configuración deseada representada por
una bola verde donde la bola roja es la configuración actual
para el grupo articular 1.

Los resultados de las tres configuraciones son mostrados en
las figuras 30,31,32. Las pruebas se ejecutaron hasta que la
norma del error fuera menor a 0.0001 asegurando que todos

Fig. 29: Robot Spot Arm en configuración 1 para Control PD
articular

los resultados mostraran seguimiento a la referencia. De esta
forma, se descartaban rápidamente ganancias que no daban
el resultado esperado al mantener el programa corriendo sin
llegar a converger el error. Después de varias pruebas, las
ganancias que se seleccionaron fueron:

Kp = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

Kd = 1.414 Kp

Fig. 30: Control PD Articular Config.1

Analizando los resultados, se afirma que el control PD
articular ha conseguido que las variables q sigan a qd con
un comportamiento crı́ticamente amortiguado. El rendimiento
del sistema muestra un error en estado estacionario igual o
cercano a 0, inexistencia de overshoot y un rápido tiempo
de establecimiento, en promedio, cercano a los 10 segundos.
Estos resultados son consistentes para las tres configuraciones
ingresadas. Por lo tanto, se asegura el control PD articular
forzará un buen seguimiento de la referencia inclusive si esta
es amplificada o si su signo se invierte.

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 12

Fig. 31: Control PD Articular Config.2

Fig. 32: Control PD Articular Config.3

C. Control dinámico operacional

En [10] se hace un desarrollo extensivo de como se expande
la formulación dinámica articular para poder controlar el
espacio operacional. Este objetivo se consigue mediante el uso
del jacobiano analı́tico multiplicando al vector de dinámica
deseada y y de su derivada multiplicando a q̇. Con ello
se logra un mapeo completo entre los dos espacios sin la
necesidad de aplicar cinemática inversa de manera explı́cita.
En consecuencia, esta metodologı́a de control no consume
tantos recursos.

Su formulación es encuentra en la siguiente lista de ecua-
ciones:

q̈ = y

Jaq̈ = Jay

ẍ− J̇aq̇ = Jay

y = J−1
a

(
ẍd − J̇aq̇ +Kdė+Kpe

)
donde se puede reformular el error de la ecuación 15 a 16
utilizando las variables operacionales.

e = xd − x (16)

Finalmente, la ley de control obtenida es igual a:

u = M(q)J−1
a

(
ẍd − J̇aq̇ +Kdė+Kpe

)
+ b(q, q̇) (17)

la cual puede repretarse graficamente con el diagrama de
control de la fig. 33

De forma similar al control articular, fueron realizados
tests en ROS-Rviz con las posiciones de las configuraciones
deseadas 1,2,3 mediante cinemática directa para analizar los
parámetros de desempeño de control generados, utilizando
como referencia solo las posiciones cartesianas. Los resultados
son mostrados en las figuras 34, 35, 36. Las simulaciones
solo fueron ejecutadas hasta que la norma del error fuera
menor a 0.0001. Ası́ mismo, a partir de la consigna que
se controlan posiciones cartesianas, las dimensiones de las
ganancias deberán ser 3 x 3. Las ganancias ajustadas obtenidas
fueron:

Kp = diag(100, 100, 100)

Kd = diag(20, 20, 20)

Fig. 33: Diagrama Control dinámico PD operacional

Fig. 34: Control PD Operacional Config.1

Fig. 35: Control PD Operacional Config.2

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 13

Fig. 36: Control PD Operacional Config.3

Para este control se tiene comportamientos diferentes en
cada configuración con respecto al seguimiento de la referen-
cia para x,y y z. El control de la configuración 1 34 presenta
sobreimpulso en las tres coordenadas, acentuándose más en y.
El seguimiento a la referencia que le sigue no es muy suave
para x y y, aun ası́, se llega a un error de estado estacionario
cercano a cero. El tiempo de establecimiento para las tres
coordenadas se encuentra en promedio a los 40 segundos.
El control de la configuración 2 35 no tiene sobreimpulso
en la coordenada x y tiene un tiempo de establecimiento
mayor (60s). Ası́ mismo, su seguimiento a la referencia es
más suave luego de su pico máximo y tambien logra seguir a
la referencia en el estado estacionario. Finalmente, el control
de la configuración 3 36 tiene un comportamiento perfecto
(cero error y estabilización rápida) para la coordenada x. No
obstante, y y z siguen presentando overshoot, curvas no muy
suaves y inclusive un aumento considerable del tiempo de
estabilización frente a las demás configuraciones.

A grandes rasgos, lo que se apreció en la visualización
en RViz y que se refleja en 34, 35, 36, fue un end effector
desplazándose rápidamente hasta una posición cercana a la
deseada y luego se reacomodaba a menor velocidad buscando
reducir el error operacional. Ello se manifiesta con un alto
overshoot inicial y un ajuste lento no muy suave de las articula-
ciones hasta seguir la referencia. Aun con diferentes valores de
ganancias Kp y Kd, este comportamiento se mantenı́a. Estas
mismas caracterı́sticas fueron visualizadas en los resultados
del control cinemático. Adicionalmente, algunas articulaciones
no se movı́an durante todo el control operacional como la
articulación prismática. Es un posible que se necesite adicionar
restricciones al control de posición, sea dinámico o cinemático,
para considerar configuraciones más óptimas ante la redundan-
cia y aprovechar todas las articulaciones en simultaneo durante
el control.

Para una implementación real, se verı́a más factible uti-
lizar el control PD articular con cinemática inversa para un
manejo del espacio operacional, sobretodo por el menor coste
computacional y los resultados obtenidos. De todas maneras,
la tarjeta Jetson ofrecerı́a suficiente procesamiento para un
control articular o operacional.

VII. CONCLUSIONES Y RECOMENDACIONES

El presente trabajo ha conseguido rediseñar el Spot Arm a
partir de la adición de una articulación prismática, actualizar
los parámetros DH y generar un modelo con enmallado en
Fusion 360 para exportar como URDF. Las distintas pruebas
referentes a la cinemática y el control del robot lograron
cumplir los siguientes puntos:

• Fue comprobado el modelo del robot y los parámetros
DH para la cinemática directa con el uso de dos markers
representando la posición esperada y la actual en 3
configuraciones distintas.

• Fueron probados dos algoritmos de cinemática inversa:
Newton-Rhapson y descenso de gradiente. Ambos re-
quirieron una configuración articular no nula para llegar
a las coordenadas deseadas en vista que la posición
inicial influencia el resultado final. El algoritmo Newton-
Rhapson muestra una convergencia más rápida, como se
estipula en la teorı́a, a coste de la posibilidad de llevar el
robot a singularidades, problema que no se presenta en
descenso de gradiente.

• Para el control cinemático, se generó el modelo
cinemático del robot mediante el calculo numérico del
Jacobiano analı́tico y de su pseudo inversa amortiguada
para manejar casos de singularidades. Utilizando un error
proporcional, se logró seguir las referencias de 3 configu-
raciones diferentes aunque con un overshoot considerable
al inicio del movimiento.

• La librerı́a RBDL permitió generar el modelo dinámico
del robot con el algoritmo recursivo de Newton-Euler
donde se calculan velocidades, aceleraciones y torques.
El modelo es descrito por la matriz de inercia, vector
de efectos no lineales y vector de torques; donde cada
arreglo fue comprobado con una configuración de prueba.

• El modelo dinámico fue aprovechado para la formu-
lación de dos esquemas de control PD, uno articular y
otro operacional. Ambos utilizaron matrices de ganancia
para conseguir un comportamiento crı́ticamente amor-
tiguado. Los resultados obtenidos para 3 configuraciones
mostraron que el control PD articular lograba seguir las
referencias con una rápida convergencia y sin sobreim-
pulso, mientras que el control PD operacional demoraba
más en converger y tiene un sobreimpulso considerable
al inicio de manera similar el control cinemático.

Luego de haber concluido el desarrolló de este proyecto, se
presenta la posibilidad de generar varias sugerencias para los
distintos apartados:

• Un modelo enmallado en Inventor o Fusion 360 permite
analizar cada link en detalle para hacer correcciones en
los parámetros DH de forma más sencilla.

• En caso la prueba de cinemática directa con markers
falle, se puede generar markers en cada articulación para
determinar que transformación homogénea está errónea.

• Establecer lı́mites articulares para evitar llevar el
robot a singularidades para cinemática inversa, control
cinemático y control dinámico. Ası́ mismo, establecer un
criterio de parada coherente para las pruebas que utilicen
algoritmos en bucle.

• Probar la cinemática inversa con varias configuraciones
buscando los mejores resultados posibles.

• Para la sintonización de ganancias en el control dinámico,
empezar modificando elemento por elemento y observar
el efecto sobre el error articular. En ocasiones, modificar
una ganancia tendrá efecto sobre dos o más articulaciones
producto del acoplamiento de la matriz de inercia. Tener

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 14

cuidado con estos casos para no llevar una articulación a
singularidad accidentalmente.

• Generar un control más estricto para el espacio op-
eracional que considere minimización sobre las config-
uraciones redundantes y que aproveche la articulación
prismática con el objetivo de reducir el tiempo de es-
tablecimiento y el overshoot inicial.

APPENDIX A
SCRIPTS UTILIZADOS

A continuación, se presentan los scripts más importantes uti-
lizados dentro de este trabajo. Fueron omitidas algunas lineas
de código para resaltar la caracterı́stica principal de cada script.
Cada programa puede ser observado con más detalle en el
repositorio del proyecto https://github.com/MarceloContreras/
FR proyecto.

test fkine Cinemática directa

Joint names

jnames = ['Rev7', 'Rev8', 'Rev9','Rev10',

'Slider11', 'Rev14', 'Rev15']

Joint Configuration

q = [0, 0, 0, 0, 0, 0 , 0]

End effector with respect to the base

T = fkine_ur5(q) # Direct kinematics

print(np.round(T, 3))

bmarker.position(T)

Object (message) whose type is JointState

jstate = JointState()

Set values to the message

jstate.header.stamp = rospy.Time.now()

jstate.name = jnames

Add the head joint value (with value 0) to the joints

jstate.position = q

Continuous execution loop

while not rospy.is_shutdown():

Current time (needed for ROS)

jstate.header.stamp = rospy.Time.now()

Publish the message

pub.publish(jstate)

bmarker.publish()

Wait for the next iteration

rate.sleep()

test ikine Cinemática inversa

Desired position

xd = np.array([-0.011, -0.143, 0.886])

Initial configuration

q0 = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

Inverse kinematics

q = ikine_Spot(xd, q0)

Joint limits

if (q[0] < -2.62 or q[0] > 3.14 or
q[1] < -0.52 or q[1] > 3.14 or
q[2] < 0 or q[2] > 2.62 or

q[3] < -4.36 or q[3] > 1.22 or
q[4] < 0 or q[4] > 0.07 or
q[5] < -1.05 or q[5] > 1.05 or
q[6] < -4.45 or q[6] > 1.31):

q = q0

print("Punto deseado fuera de alcance.")

Resulting position (end effector with respect

to the base link)

T = fkine_Spot(q)

Messaje JointState

jstate = JointState()

Adding q

jstate.position = q

Continuous execution loop

while not rospy.is_shutdown():

Publish the message

pub.publish(jstate)

rate.sleep()

test diffkine Control cinemático

Posicion deseada

Caso 1

qd = np.array([2.18, 2.86, 1.93, -2.77,

0.04, 0.8, 0.38]); k = 12

Caso 2

#qd = np.array([0.36, 2.89, 2.40, -1.96,

0.03, -0.04, -2.05]);k= 5

Caso 3

#qd = np.array([1.85, 2.93, 1.76, -1.55,

0.04, -0.35, 0.33]); k = 10

Se define la posicion deseada en base a

qd usando la cinematica

directa dependiendo del caso

T = fkine_Spot(qd)

xd = T[0:3,3]

Initial configuration

q0 = np.array([0, 0, 0, 0, 0.000001, 0, 0])

Resulting initial position

T = fkine_Spot(q0)

x0 = T[0:3,3]

epsilon = 0.0001

count = 0

u_lim = np.array([3.14159, 3.14159, 2.61799,

1.22173, 0.075, 1.047198, 1.30899])

l_lim = np.array([-2.61799, -0.523599, 0,

-4.3633, 0, -1.047198, -4.45059])

Frequency (in Hz) and control period

freq = 200

dt = 1.0/freq

rate = rospy.Rate(freq)

t = 0

https://github.com/MarceloContreras/FR_proyecto
https://github.com/MarceloContreras/FR_proyecto

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 15

Initial joint configuration

q = copy(q0)

Main loop

while not rospy.is_shutdown():

Kinematic control law for position

Calculo del jacobiano y posicion actual

J = jacobian_Spot(q, 0.0001)

x = fkine_Spot(q)

x = x[0:3, 3]

Calculo del error

e = x - xd

Condicion para detener el algoritmo

if(np.linalg.norm(e) < epsilon):

print('Desired point reached')

print(e)

print(x)

print('iteraciones', count)

break

Ley de control

de = -k*e

Comprobacion del rango del Jacobiano

rank_J = np.linalg.matrix_rank(J)

Si el rango es menor a 3 se usa la pseudo-inversa

amortiguada

if (rank_J < 3):

dq = J.T.dot(np.linalg.inv(J.dot(J.T)

+0.01*np.eye((3)))).dot(de)

print(rank_J)

print(J)

else:
dq = np.linalg.pinv(J).dot(de)

Se actualiza el q potencialmente

q_pot = q + dt*dq

Si una articulacion sale de sus limites no se actualiza

for i in range(7):

if ((q_pot[i] < u_lim[i]) and
(q_pot[i] > l_lim[i])):

q[i] = q_pot[i]

Se detiene el algoritmo despues de

10000 iteraciones si

no se llego al punto deseado

count = count + 1

if(count > 10000):

print('Max number of iterations reached')

break

t = t + dt

Wait for the next iteration

rate.sleep()

control dinInv.py Control dinámico operacional

=============Grupo 1============

Configuracion articular inicial (en radianes)

q0 = np.array([0., 0., 0., 0., 0., 0., 0.])

Velocidad inicial

dq0 = np.array([0., 0., 0., 0., 0., 0., 0.])

Configuracion articular deseada

qdes = np.array([2.34, 2.33, 2.26, -0.05, 0.07,

0.37, 1.03])

dqdes = np.array([0., 0., 0., 0., 0., 0., 0.])

ddqdes = np.array([0., 0., 0., 0., 0., 0., 0.])

================================

Posicion resultante de la configuracion articular

deseada

xdes = fkine_Spot(qdes)[0:3, 3]

dxdes = np.array([0, 0, 0]) # Vel deseada

ddxdes = np.array([0, 0, 0]) # Acc deseada

jstate.position = q0

pub.publish(jstate)

Modelo RBDL

modelo = rbdl.loadModel('../urdf/Spot.urdf')

ndof = modelo.q_size # Grados de libertad

Se definen las ganancias del controlador

valores = 100*np.array([1.0, 1.0, 1.0])

Kp = np.diag(valores)

Kd = 2*np.sqrt(Kp)

Limites

q_max = [3.14159, 3.14159, 2.61799, 1.22173,

0.075, 1.047198, 1.30899]

q_min = [-2.61799, -0.523599, 0.0, -4.3633,

0.0, -1.047198, -4.45059]

while not rospy.is_shutdown():

Leer valores del simulador

rbdl.CompositeRigidBodyAlgorithm(modelo, q, M)

rbdl.NonlinearEffects(modelo, q, dq, b)

Posicion actual

x = fkine_Spot(q)[0:3, 3]

Jacobiano, inversa y derivada

J = jacobian_Spot(q)

invJ = np.linalg.pinv(J)

dJ = (J - J_1)/dt

dx = J.dot(dq)

Error

de = dxdes - dx

e = xdes - x

Ley de control

u = M.dot(invJ).dot(ddxdes - dJ.dot(dq) +

Kd.dot(de) + Kp.dot(e)) + b

Actualizacion

ddq = np.linalg.inv(M).dot(u-b)

qprev = q + dt*dq

dq = dq + dt*ddq

Comprobacion de limites articulares

for j in range(ndof):

if(qprev[j] > q_min[j] and qprev[j] < q_max[j]):

PROYECTO DE FUNDAMENTOS DE ROBÓTICA MT-0006 UTEC, JUNIO 2022 16

q[j] = qprev[j]

Valor articular final

print(np.round(q, 4))

Criterio de parada

if(np.linalg.norm(xdes - x) < 1e-4):

break

Publicacion del mensaje

jstate.position = q

pub.publish(jstate)

t = t+dt

Esperar hasta la siguiente iteracion

rate.sleep()

control dinInv2.py Control dinámico articular

#=========Grupo 1==========

Configuracion articular inicial (en radianes)

q0 = np.array([0., 0., 0., 0., 0., 0., 0.])

Velocidad inicial

dq0 = np.array([0., 0., 0., 0., 0., 0., 0.])

Configuracion articular deseada

qdes = np.array([2.34, 2.33, 2.26, -0.05,

0.07, 0.37, 1.03])

dqdes = np.array([0., 0., 0., 0., 0., 0., 0.])

ddqdes = np.array([0., 0., 0., 0., 0., 0., 0.])

#==========================

Se definen las ganancias del controlador

valores = 0.5*np.array([1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0])

Kp = np.diag(valores)

Kd = 2*np.sqrt(Kp)

Limites

q_max = [3.14159, 3.14159, 2.61799, 1.22173,

0.075, 1.047198, 1.30899]

q_min = [-2.61799, -0.523599, 0.0, -4.3633,

0.0, -1.047198, -4.45059]

while not rospy.is_shutdown():

Leer valores del simulador

rbdl.CompositeRigidBodyAlgorithm(modelo, q, M)

rbdl.NonlinearEffects(modelo, q, dq, b)

Posicion actual

x = fkine_Spot(q)[0:3, 3]

Error

e = qdes - q

de = dqdes - dq

Ley de control

u = M.dot(ddqdes + Kd.dot(de) + Kp.dot(e)) + b

Actualizacion

ddq = np.linalg.inv(M).dot(u-b)

qprev = q + dt*dq

dq = dq + dt*ddq

Comprobacion de limites articulares

for j in range(ndof):

if(qprev[j] > q_min[j] and qprev[j] < q_max[j]):

q[j] = qprev[j]

print(np.round(q, 4))

Criterio de parada

if(np.linalg.norm(qdes - q) < 1e-4):

break

Publicacion del mensaje

jstate.position = q

t = t+dt

Esperar hasta la siguiente iteracion

rate.sleep()

REFERENCES

[1] Boston Dynamics lanza una nueva versión de spot, 02 2021.
[2] Debolina Biswas. All You Need To Know About Boston Dynamics’

Spot, 12 2021.
[3] Gerardo Bledt, Matthew J. Powell, Benjamin Katz, Jared Di Carlo,

Patrick M. Wensing, and Sangbae Kim. Mit cheetah 3: Design and
control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2245–2252, 2018.

[4] Boston Dynamics. What’s New in Spot — Boston Dynamics, 05 2022.
[5] Ben Dickson. Boston Dynamics’ Spot robot is securing its position in

a niche market, 09 2021.
[6] Martin L. Felis. Rbdl: an efficient rigid-body dynamics library using

recursive algorithms. Autonomous Robots, pages 1–17, 2016.
[7] Erico Guizzo. How Boston Dynamics Is Redefining Robot Agility, 08

2021.
[8] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber,

C. Dario Bellicoso, Vassilios Tsounis, Jemin Hwangbo, Karen Bodie,
Peter Fankhauser, Michael Bloesch, Remo Diethelm, Samuel Bachmann,
Amir Melzer, and Mark Hoepflinger. Anymal - a highly mobile and
dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 38–44, 2016.

[9] Toshinori Kitamura. Fusion2urdf. https://github.com/syuntoku14/
fusion2urdf, 2020.

[10] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan Schaal.
Operational space control: A theoretical and empirical comparison. The
International Journal of Robotics Research, 27(6):737–757, 2008.

[11] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: Modelling, Planning and Control (Advanced Textbooks in
Control and Signal Processing). Springer, 1st ed. 2009 edition, 2008.

[12] Mark Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, 1 edition, 2005.

https://github.com/syuntoku14/fusion2urdf
https://github.com/syuntoku14/fusion2urdf

	Introducción
	Componentes
	Modelo del Robot
	Cinemática directa e inversa
	Cinemática directa
	Cinemática inversa
	Método de Newton-Raphson
	Método del descenso de Gradiente

	Control cinemático
	Implementación del control cinemático
	Configuraciones singulares

	Dinámica y control dinámico
	Dinámica
	Control dinámico articular
	Control dinámico operacional

	Conclusiones y recomendaciones
	Appendix A: Scripts utilizados
	References

