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Abstract—Multi-agent mobile robot systems are becoming
more popular in research and industrial communities. The
following sub-fields: i) multi-agent perception, ii) localization
and mapping, iii) distributed control, and iv) system designs are
the major fields of interest. In this project, we will investigate
the advantages and complexities of a centralized multi-agent
SLAM system (also known as collaborative SLAM) and analyze
the possible improvements compared to single-agent SLAM. We
propose leveraging the COVINS-G backend [1] as a centralized
server that receives keyframes and images from the single-agent
SLAM, searching for loop candidates and optimizing their paths
in a single trajectory by Pose Graph Optimization. A potential
experimental setup that includes the system design and leverages
LiDAR scans as ground truth is proposed.

I. INTRODUCTION

Multi-agent mobile robot systems have gained more interest
from research and industrial communities in recent years
due to the diversity of their applications, the potential of
robot-robot interactions in a highly autonomous environment,
and the design challenges of these systems. For the research
topics in this field, the following research topics including i)
multi-agent perception [2], [3] (perception of the environment
and other robots, etc.), ii) localization and mapping [4], [5]
(multi-agent localization problem, SLAM etc), iii) distributed
control [6]–[9], and iv) system designs [4], [10], [11] (cen-
tralized/distributed communication, offline/cloud-based com-
putations, etc) are catching attention. For industrial and
commercial applications, multi-robot systems are becoming
popular in scenarios such as autonomous warehouses and
indoor/outdoor patrolling and monitoring, which require robust
and computation-efficient methods that resolve the complex-
ities introduced by multi-agent systems. In this work, we
investigate the advantages and complexities of the multi-agent
SLAM problem (also called collaborative SLAM) with a real
RC car platform. We select a centralized collaborative SLAM
framework that processes the inputs from the front ends of
all agents on a central server. In particular, we verify the
computation efficiency and the compatibility of our stereo
visual odometry front-end with the publicly available multi-
agent SLAM backend COVINS-G [1]. We also analytically
compare the accuracy of the multi-agent SLAM framework
with a highly accurate LiDAR SLAM framework that is
regarded as ground truth. To summarize, we have the following
objectives for this project:

• Designing a real Ackermann steering RC car platform
that features hierarchical processing design which maxi-
mizes the processing capability of each part with extend-
ability to variety of sensors

• Verifying the compatibility of our stereo visual SLAM
front-end (customly crafted for this work) with the se-
lected collaborative SLAM backend framework COVINS-
G; analytically investigating the computational efficiency
of the overall framework

• Numerically comparing the accuracy of the multi-agent
SLAM framework with a highly accurate LiDAR SLAM
framework

The remainder of the paper is organized as follows: Section
II presents the related works in collaborative SLAM based
on their design categories. Sections III-A to III-B present the
overall system design that features the hierarchical processing
and the kinematic model used by the low-level processing part
for the RC car platform. Section III-C discusses the robot
agent’s SLAM, including problem statements and front-end
and back-end designs from the high-level processing part.
Section III-D discusses the centralized server COVINS-G that
fuses the inputs from all mobile robot agents. The system setup
and experimental results are presented in Section IV, and we
conclude our project in Section V.

II. RELATED WORKS

Collaborative SLAM comes in different flavors: i) delivering
all agent map fusion procedures to a centralized server, ii)
distributing the load uniformly across all agents, and iii)
sending several copies of the joint map to each agent (no map
splits) and letting them process it just with onboard computing.

For centralized collaborative SLAM systems, CVI-SLAM
[12] paved out of the basis to establish cooperation between
agents and a centralized server where landmarks, keyframes,
and images were sent bidirectionally, such as any correction
introduced by the server after PGO or BA could be sent
back to the on-board SLAM. It introduced key elements such
as place recognition for loop closing and PGO to align the
agent’s trajectory. It even removed information on redundant
keyframes following information theory. Nevertheless, it was
heavily ROS-dependent, and several modules could be opti-
mized further. In COVINS [13], the authors introduced a p2p
communication protocol to make the CVI-SLAM framework
flexible and rely less on ROS. In addition, they included a
routine to merge the agent’s maps into a single one to lower
the memory footprint. On top of that, they modified the opti-
mization routine by first applying a series of PGO iterations
and running a Global Bundle Adjustment at the end of the
sequence to lower the computation burden. AdaptSLAM [14]
introduced several novelties not in the architecture design but
in the keyframe selection and map managing. The authors pro-
posed quantifying the uncertainty introduced by each keyframe
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as a criterion for their selection and efficiently constructing
local/global maps under resource constraints. CMD-SLAM
[15] is another centralized visual SLAM but utilizes direct
dense tracking instead of feature sparse and achieves a sig-
nificant message compression between agent and server using
LiDAR-based descriptor for the local map. Furthermore, to
provide an informative initial position for PGO, their approach
does a first alignment between agent trajectories with Iterative
Closes Point, a LiDAR-based registration, after detecting loop
closures. Distributed approaches send chunks of the global
map of each agent and perform the loop-closing search within
that region, thus splitting the computational load and achieving
faster inference time. Kimera-Multi [16] is a dense-semantic
distributed multi-agent SLAM that detects loops by sending
DBoW2 descriptors whenever p2p communication is available
between agents. Each agent is in charge of correcting their
trajectory and map with the loop closure in a PGO, and
then the refined map is propagated to the agents again.
The optimized map is reused for local map matching, and
the onboard trajectory achieves higher precision. In addition
to all these contributions, the map contains semantic labels
refined in the PGO for high-level scene understanding for
motion planning. IRBCD [17] proposed using a Rienmann
optimization partition algorithm to send an equal amount of
load on PGO optimization to each robot. This solves the
fundamental problem of having a subset of robots idle due to a
hefty load in optimization/map merging for one of the robots.
MAGIC-SLAM [18] takes some of the ideas of the previous
work but adapts them to the context of Gaussian Splats instead
of 3D point landmarks for scene reconstruction. Gaussian
Splatting can render novel views with dense-pixel quality in
real-time, in contrast with NeRF, and with a low GPU memory
footprint. Nonetheless, procedures such as tracking, keyframe
selection, and pose inference must be reformulated to account
for the features of 3D Gaussian Splats. That includes the
place recognition where the authors utilized DinoV2 [19], a
foundational vision model, to compute descriptors and found
loop candidates.

On the other hand, decentralized methods broadcast the
global map of each agent but in chunks; therefore, each agent
processes the whole load and tends to have a suboptimal run-
time, though with higher robot independence under communi-
cation troubleshoots or outliers. DOOR-SLAM [20] leverages
a pairwise consistent measurement set maximization to detect
spurious loop candidates that have more chances of being in
the pose graph when there is no full connectivity between
robots or when a robot corrects its trajectory but has not been
able to broadcast it entirely. In this way, a robot can detect its
own set of outliers regardless of the pose graphs of its peers
and achieve better individual performance. Swarm-SLAM [21]
also uses a a maximum algebraic connectivity augmentation
problem for outlier detection with an additional step of graph
sparsification to achieve faster performance and reduce load
on decentralized schemes. Furthermore, their pipeline exploits
sensor input from several sources, including LiDAR, RGB-
D, IMU, and wheel/legged odometry, as constraints in the
PGO. D2SLAM is a promising intersection of decentralized
and distributed approaches. It builds upon p2p communication
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Figure 1: The overall system design for a multi-purpose
Ackermann steering RC car.

protocols to detect loop candidates in a distributed way using
NetVLAD and Ceres optimizer for PGO. However, the front-
end and full BA is run on-board on each agent (decentralized).
The systems could also distribute the BA when the number of
outliers reaches a threshold, or local map matching quality
is poor. In that sense, D2SLAM has the advantages of both
worlds.

III. METHODOLOGY

A. System design overview

We include the overall system design diagram in Fig. 1,
which includes the following major components: one servo
motor for front wheel steering, two DC motors for differential
speed rear wheels, two motor controller boards for the servo
motor and the DC motors, respectively, one ESP32 micro-
controller for low-level computation tasks, one Jetson nano
super for high-level computation tasks, one Xbox joystick
for manual control mode of the RC car, and arbitrary on-
board sensors for perception inputs. The system design mainly
adopts the separation of the high-level processing part with
the Jetson nano platform from the low-level processing part
to maximize the computation performance of each part. The
low-level part is responsible for the tasks requiring critical
real-time performances, such as reading motor encoder values
accurately and emergency brakes, and the high-level part is
responsible for computation and memory-intensive tasks, such
as visual odometry and path planning. The low-level part and
high-level parts communicate with each other via ROS serial
package in a data format that is discussed in Section III-B.

The Ackermann steering at the RC car’s front side utilizes
a differential steering mechanism that turns the front left and
front right wheels at different steering angles for a given
turning radius of the RC car. The differential steering angles
can be represented as an equivalent steering angle at the center
of two front wheels, one of the control inputs (discussed in
Section III-B). We select the position control mode with its
source library on ESP32, available from the manufacturer, to
control this target steering angle. A position refers to the high-
resolution absolute encoder on the servo motor, which reads
from 0 - 4095 for a full resolution. Therefore, a calibration
process is required to map the servo motor’s position to the
actual steering angle at the center of the front wheels. Consider
the two maximum steering angles at the center of the front
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Figure 2: A calibration scene for mapping steering angles
to servo motor positions. The estimated turning radius R at
the center of rear wheels is determined from the estimated
intersection of the turning radius of the inner turning wheel
Rinner, the turning radius of the outer turning wheel Router,
and the line of lateral extension at the center of rear wheels.

wheels for left turns (δl,max) and right turns (δr,max) that have
the corresponding equivalent servo motor positions pl,max and
pr,max, respectively. We assume a linear mapping from input
steering angles δ to servo motor positions p is adopted such
that p = pl,max +∆δ2p(δ − δl,max) where ∆δ2p is the slope
of this linear mapping given by ∆δ2p =

pr,max−pl,max

δr,max−δl,max
. pl,max

and pr,max are determined by the motor debugging software
on the PC available from the manufacturer, and δl,max and
δr,max are determined by the estimated turning radius R at
the center of the rear wheels with δ = arctan(LR ) where L is
the distance between the front and rear wheels of the RC car.
A calibration scene is illustrated in Fig. 2.

The two DC motors that drive the rear wheels are con-
trolled separately with velocity control mode using the motor
controller board and ESP32 in the system design diagram.
The DC motors have high-resolution AB phase encoders, each
generating 15,000 pulses for a full resolution, so the encoder
generates 60,000 pulses in total for a full resolution. We track
half of the pulses (30000 pulses) to lower the computation
load on ESP32 while simultaneously keeping a good rotation
estimation resolution. Then, the instantaneous rotation velocity
of each motor can be estimated from the number of pulses that
have passed in a short period of time (e.g., 10 milliseconds)
controlled by a timer function on ESP32, and we convert the
rotation speed to linear velocity based on the measured wheel
radius of rear wheels. A simple PID controller is designed to
determine the pulse width modulation (PWM) value at discrete
periods (e.g., 10 milliseconds) to control the rear wheels at
target linear velocities denoted as vleft and vright for the left
and right rear wheels, respectively.

B. Kinematic model in low-level controller

In this section, we discuss the data format that is trans-
ferred between the low-level processing part and the high-
level processing part in the system design diagram, which
requires the kinematic model of an Ackermann steering vehicle
and the separation of autonomous control mode and manual

control mode (using a joystick controller). We use the bicycle
steering model of an Ackermann steering model as the motion
model. The control inputs sent by the high-level processing
part are the equivalent steering angle for the front wheels
and the linear velocities of left and right rear wheels (i.e.,
u = [δ vleft vright]

T ), and the instantaneous motion output
of the vehicle sent by the low-level processing part is the
longitudinal linear velocity and the angular velocity at the
center of rear wheels (i.e. y = [vx θ̇]T ). The following kine-
matic equations of a bicycle are used to convert between the
quantities interchangeably. From [δ vleft vright]

T to [vx θ̇]T :

R =
L

tan(δ)
(1)

vx =
vleft
R−D

2

R

=
vright
R+D

2

R

(2)

θ̇ =
vx
R

(3)

and from [vx θ̇]T to [δ vleft vright]
T :

R =
vx

θ̇
(4)

δ = arctan(
L

R
) (5)

vleft = vx
R− D

2

R
(6)

vright = vx
R+ D

2

R
(7)

in which L and D are the distance between front and
rear wheels and the distance between left and right wheels,
respectively. The control inputs are transferred with a
std msgs/Float32MultiArray message in ROS which is easy
to contain the synchronized input variables and to be directly
executed by the motor controller and ESP32, while the motion
outputs are transferred with a geometry msgs/Twist message
in ROS which is a commonly selected ROS message type
subscribed by the ROS nodes on the high level processing
part for tasks such as visual odometry and path planning.

The separation of autonomous control mode and manual
control mode is required since the motion commands sent
by the ROS nodes for autonomous controls are often with
geometry msgs/Twist messages. Linear and angular velocity
must co-exist as long as the angular velocity does not equal
zero. In contrast, manual control mode allows a joystick to
turn the steering wheels without driving the rear wheels. We
design a ROS node that sets up the control mode, and if
manual control is selected, we first map the joystick’s steering
angle axis input (e.g., [−1, 1] from the axis corresponding
to [−0.5 rad, 0.5 rad] for the steering angle) to turn the
steering motor. After that, if the linear velocity is not zero, we
calculate the instantaneous turning radius of the vehicle from
Eq. 1. Then, we choose the rear driving wheel that corresponds
to the outer turning radius to be mapped from the joystick’s
velocity axis input (e.g. [−1, 1] from the axis corresponding
to [−1 m/s, 1 m/s] for the linear velocity) based on the
calculated instantaneous turning radius. Finally, the turning
radius determines the instantaneous linear velocity of the other
rear driving wheel from Eq. 6 and Eq. 7.
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C. Agent SLAM overview

Figure 3: SLAM system architecture composed of a visual
front-end that takes incoming images and search for correspon-
dences with the last keyframe while the back-end process the
keyframes by feature detection, stereo registration, landmark
creation and covisibility check.

The proposed visual state estimation framework, which
includes the visual front-end and back-end as two separate
threads, is provided in this section and depicted in Fig. 3.

In the developed visual odometry pipeline, Tw
ck
,Rw

ck
and

twck denote the pose, rotation, and translation of the kth camera
frame w.r.t the world frame w, set to be the first camera frame
initialized at zero position and identity rotation. zIk denotes
detected image features of the kth image frame, lwi represents
the 3D position of the ith landmark in the world frame, and
dck is the depth information of the kth camera frame.

1) Preliminaries and problem statement: The aim is to
estimate the current robot pose Tw

ck
∈ SE(3) in the body frame

ck at camera frequency (at time instant tk = kTs with the
sampling time Ts) with respect to the world frame w, where
the relative motion of the body could be introduced as the
following compact form with the rotation Rw

ck
∈ SO(3) and

translation twck ∈ R3 entries:

Tw
ck

=

[
Rw

ck
twck

0 1

]
(8)

The front-end relies on the minimization of reprojection
error between the detected image features zIk

i = [u, v]⊤ ∈ R2

and 3D landmark points lwi = [x, y, z]⊤ ∈ R3 in consecutive
timestamps to estimate the camera pose T̂w

ck
with the pinhole

camera model denoted by π(·) [22]:

T̂w
ck

= argmin
Tw

ck

∑
i∈Lk

||zIk
i − π(Tw−1

ck
⊞ lwi )||2 (9)

ẑIk
i ≜ π(lcki ) =

[xfx
z + cx

yfy
z + cy

]
(10)

in which fx, fy are the horizontal and vertical focal lengths,
and cx, cy are the horizontal and vertical principal points
from the camera intrinsic parameters K. The set Lk is the
correspondence pair indices between features and landmarks
estimated by tracking of keypoints or matching of descriptors
for the camera frame ck, and ⊞ is the composite operator

defined for SE(3) [23]. The features zIk are the result of
detecting distinctive sparse pixels of the image for motion
tracking, such as corners, edges, or blobs [24]–[26]. The 3D
landmark is a metric representation of the environment. It
can be re-computed by the back projection of features zIk

i

from image plane Ik to the camera frame ck using the inverse
pinhole camera model π(·)−1 and depth value dcki estimated
by stereo triangulation.

lcki =


(u−cx)d

ck
i

fx
(v−cy)d

ck
i

fy

dcki

 = π−1(zIk
i , dcki ) (11)

2) Front-end: The front-end assumes that features have
been detected in the last keyframe Kj−1 and propagated
till the last image Ik−1. The thread tracks features to the
current image by Lucas Kanade Tracker (LKT) [27] with
the premise that only the source image needs features while
the LKT will compute the ones for the target frame. As a
means to detect outliers, i) we verify that the tracks do not
report an LKT error above 3 pixels and ii) backtrack the
current features zIk to previous image Ik−1 to discard the
tracks with more than 0.5 error pixels. For each feature, we
propagate the last associated 3D landmark till the track is
lost due to the outlier filtering previously described. Using
those 3D points and their respective 2D measurements in Ik,
we estimate the camera pose Tw

ck
at kth time by a motion-

only BA, an alternative formulation to Perspective-to-N-points
(PnP) that could account for 3D points not necessarily on the
previous frame ck−1 since they are represented w.r.t the world
frame w. In contrast to regular BA, the motion-only variant
does not optimize the 3D points, just the camera pose. The
optimization discards outlier edges with χ2 test by checking
if the reprojection error of each measurement is lower than the
respective threshold χ2(2DoF, 95%) = 5.955 and removes it
from the factor graph. This process is repeated 5 times as it
was found experimentally that results converge to the optimal
value while fulfilling the real-time requirements. On average,
the front-end thread takes 10ms to finish in a 720p image.
As the last step, the front-end decides if the frame should be
selected as a keyframe and sent to the back-end if it fulfills
two criteria: i) less than 50% of the points from last keyframe
were successfully tracked, ii) the relative displacement is larger
than 0.1m and if the median cosine of parallax angle between
current frame and last keyframe is less than a threshold (e.g.,
0.9998).

3) Back-end: The back-end is triggered when a new
keyframe Kj is accepted or in initialization. The thread starts
by taking the first image I0 as keyframe K0 and detecting
features from Shi-Tomasi corners (GTTF). Suppose features
were successfully propagated from previous frames through
LKT to the new keyframe. In that case, we create a region
of interest (ROI) as a rejection mask around each feature
with a radius of 15 pixels. In that way, we keep the robust
tracks for a more extended period, reduce runtime by limiting
the detectable area, and distribute the feature evenly across
the image. Next, the back-end searches for correspondences
between stereo pairs of images in a similar way as in the front-
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end through relying on LKT but with the singularity that we
initialize the feature location in the right image with either
i) feature matched by a line-search using Sum-of-absolute
differences or if the first try fails ii) we set it to the same
location as the left feature. The initialization enables us to
get solutions closer to the convergence basin, which translates
into faster and more accurate estimations. After that, stereo
features are triangulated using the calibration matrix K and
stereo baseline b to 3D landmarks in camera frame lcki . At
last, we search for more feature correspondences using the
same criteria as the visibility check from [28]. To do so, we
previously computed the BRIEF descriptor on all features,
including those previously tracked, as they are appearance-
dependent (i.e., pixel intensity of current image). If all steps
were executed successfully, the back-end optimizes the last 10
keyframes in a fixed lag-smoother using Bundle Adjustment.

Bundle adjustment: BA is a non-linear least square prob-
lem originally formulated as Structure-from-Motion in the
photogrammetry field. The problem estimates jointly the cam-
era poses T and landmarks L by minimizing the reprojection
error e(ck,l) using the Mahalanobis distance with information
matrix Σ = I2×2.

{T̂ , L̂} = argmin
∑
ck∈T

∑
i∈Lk

ρ(e(ck,l)),

e(ck,i) = ||zIk
i − π(Tw

ck
⊟ lwi )||2Σ,

(12)

where ⊟ is the retraction operator defined for SE(3). The
general purpose Ceres optimizer [29] is selected as the solver
utilizing the Levenberg–Marquardt algorithm, suitable for non-
linear least square problems, and Cholesky Decomposition to
leverage Hessian sparsity and speed up the process. Following
10 iterations, the back-end stops the optimization and discards
any edge with an error that does not fulfill the χ2 test. Five
more iterations are run after this filtering. After optimization,
outliers are classified again, and if detected, the observation is
removed from its corresponding landmarks from the L map.

D. Centralized server

CommVIO/
Tr. cam

Comm 1 Place Rec. +
Loop TF

PGO
Map

Fusion
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Loop TFComm n

Server Maps

	 ...XServer 
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KFs

call

Agent n
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Figure 4: COVINS-G [1] centralized server which is charge of
fusing the SLAM results from each agent into a unified map.

We employed COVINS-G [1] (see Fig.4) as a centralized
server that receives incoming keyframes from the visual
SLAM of each agent running onboard. COVINS-G is a

generalized version of COVINS [13] that builds upon a front-
end agnostic sever by only relying on keyframes and im-
ages. Thus, different kinds of SLAM solutions (feature-based,
dense-based, or learned-based) could map the environment
jointly. Although this framework is less arcuate than its former
version, our integration with front-end SLAM is seamless and
requires minimal to no code modifications as it only requires
publishing the synchronized image-keyframe pair.

The agents are communicated from a peer-to-peer (p2p)
communication protocol, and information is sent in batches to
maintain consistent sending frequencies. The server receives
the keyframe pose and the image and detects a new set of ORB
features over the image to use later for place recognition and
loop closing detection. To perform it, keyframes are saved in a
database, and any loops are searched between the database and
a query (new) keyframe by the Bag-of-words [30] algorithm
fed from the ORB features [26]. Since the server does not
store 3D landmarks, standard algorithms to estimate relative
pose in a loop such as 3D-2D Ransac (as in VINS-Mono [31]
or ORB-SLAM 3 [32]) are unfeasible. The 5-point algorithm
(2D-2D RANSAC) will not solve the issue since it estimates
the relative pose up to a scale factor. Instead, COVINS-G
proposed leveraging several neighborhood keyframes between
the candidate from the database and the query to form a
multi-camera system (within the agent trajectory or between
two agents) and infer the pose using the 17-point algorithm.
The method leverages 17 2D-2D correspondences through the
generalized epipolar constraint, an extension of the epipolar
constraint without a central projection point. The server wraps
this inference with a RANSAC scheme to detect outliers and
retrieve the most extensive set of inliers with its corresponding
pose. If 100 inliers were found at least, the candidate pair of
keyframes is accepted and sent as a constraint to the Pose
Graph Optimization (PGO) for path refinement.

1) Pose Graph Optimization: PGO could be considered a
special case of BA without optimizable landmarks, drastically
reducing its computational complexity and runtime.

{Â} = argmin
∑

(i,j)∈O

e(i,j) +
∑

(k,l)∈C

ρ(e(k,l)),

e(1,2) = || log(T2
1 ⊞Tw

2 ⊟Tw
1 )||2Σ,

(13)

where A = {T1, T2, . . . , TM} is the joint set of agent
keyframe poses, O is the set of odometry measurements as
edges that connect two keyframes and C is the set of loop
candidates. The log operator defines a Euclidean error for
SE(3), and we wrap the loop closures with a robust function
for outlier detection, such as in BA. This optimization solver is
solved using the same settings as the BA, including the Ceres
solver, sparsity handling, and number of iterations. When the
optimization is completed, the map of all agents is merged
into a single one, which is aligned with the first agent map.

IV. EXPERIMENTAL RESULTS

A. Setup

We equipped the RC Car with a sensor suite composed of
one stereo ZED Mini camera, which provides a 30 Hz stream
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Figure 5: Three views of the RC Car including top view taken
from an external camera, left and right onboard camera views.

of 1280×720p image with built-in 9-DoF IMU and one ROS-
compatible 2D rotary LiDAR that outputs laser scans at 10
Hz. Fig. 5 shows a synchronized camera stream from the
left and right lenses. The ZED ROS driver is in charge of
calibrating cameras, delivering those settings to the camera
configuration memory, and synchronizing and rectifying the
stereo views to allow finding stereo correspondences in a line
search. That visual stream is sent to the onboard SLAM to
provide keyframes to the COVINS-G server.

Since we do not have access to a Motion Capture System
for beacon tracking nor a 3D LiDAR for high-precision
localization, we compute the ground-truth trajectory from the
2D LiDAR scans with Hector SLAM [33]. Hector SLAM
leverages an occupancy grid as a discrete map from which
LiDAR scans are matched and then fed into an optimization
problem to infer the robot pose. Since occupancy grids have
a limited resolution to save memory footprint, the authors
proposed an interpolation method to achieve sub-grid cell
accuracy. We need to synchronize the LiDAR and camera
estimations for error computation and align their trajectories
since they use different frame conventions (see Fig.7). To
synchronize them, we employed the ROS Time Synchronizer
now as Approximate Message filter that matches
sensor messages when their timestamps are close enough
within a margin of 5ms. Then, camera poses Tw

ck
are transform

to the LiDAR frame TL0

Lk
:

TL0

Lk
= TL

cT
w
ck
(TL

c )
−1 (14)

where Tl
c is the extrinsic matrix between the LiDAR and

camera frames, measured previously while setting up the
sensors.

B. Localization accuracy

Trajectory estimation accuracy is estimated through two
metrics: i) Absolute Trajectory Error (ATE) and ii) Relative
trajectory Error (RTE). While the former measures the trajec-
tory offset at each pose and is heavily influenced by global
corrections such as Full Bundle Adjustment or Loop Closing
with Pose Graph Optimization, the latter measures deviations
in terms of relative transformations (which could be interpreted
as velocity in a differential form) and its precision is coupled
with the features tracking and Motion-Only BA. Generally, the

APE is an accumulated measure of RPE and exhibits drifts as
time progresses.

ATEi = ||E−1
est,iEgt,i − I4×4||2 (15)

RTEi,j = ||(E−1
gt,iEgt,j)

−1(E−1
est,iEest,j)− I4×4||2 (16)

Specific error measures from translation and rotation could
be extracted from ATE and RTE by matrix slicing in case of
translation, and for rotation, you must parametrize the error
rotation Er by the tangent space of SO(3) known as Lie
Algebra (so(3)). We compute and plot both errors using the
Evo package [34].

We compared two trajectories recorded over the same lo-
calization and simulated two different agents. We processed
them sequentially until the COVINS-G found a loop closure
between them and closed it with PGO (see Fig.6). However,
they could also be processed in parallel if we had two RC
cars. Tabs. I and II report the error statistics (Min., RMSE,
Max.) before and after the map merging in the centralized
server. While RPE slightly increases and rotation APE does
not change drastically, the translation APE gets a reduction
of 31% for Agent 1# and 36% for Agent 2#. This happens
because PGO only enhances the APE performance while RPE
could be manipulated towards minimizing the APE, even if
that means increasing the RMSE RPE. Regarding the rotation
part, since the dominant motion component is the translation
(you can think of the trajectory as a rectangle with four 90-
degree rotations), the excitation level is not enough for the
PGO to minimize it jointly with the translation.

Table I: Trajectory error of agents before map fusion in
centralized server

Agent APEt[m] RPEt[m] APER[rad] RPER[rad]

I
Min. 0.024 0.001 0.077 0.001

RMSE 0.195 0.015 0.181 0.010
Max. 0.335 0.109 0.258 0.043

II
Min. 0.036 0.001 0.144 0.001

RMSE 0.118 0.014 0.179 0.010
Max. 0.221 0.049 0.227 0.043

Table II: Trajectory error of agents after map fusion in
centralized server

Agent APEt[m] RPEt[m] APER[rad] RPER[rad]

I
Min. 0.012 0.008 0.083 0.002

RMSE 0.137 0.032 0.176 0.015
Max. 0.322 0.096 0.249 0.061

II
Min. 0.012 0.011 0.137 0.002

RMSE 0.075 0.028 0.168 0.013
Max. 0.176 0.058 0.219 0.030

Fig.9 depicts how the APE varies along each agent path.
Their error is homogeneously distributed along the trajectory.
It increases with a slow phase till it reaches its maximum
values at the end of the sequence, as expected since it is the
point where the most drift is accumulated. More important
than just the error and drift, it is worth noting that the
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(a) (b)

Figure 6: Rviz visualization from COVINS-G backend: Trajectories of the first agent and second agent have loop closures
between each other as red rods. Loop closures could also be set within a single agent for drift reduction. a) Before map
merging, b) After map merging

Figure 7: Coordinate frames involved in the sensor setup

COVINS-G aligns the trajectory of different initial poses into
a single one (see Fig8) on real-time such as the collaborative
navigation tasks rely less on post-run processing routines. We
suspect that error results could be enhanced further if 3D
landmarks are included in a collaborative BA instead of just
PGO, but with the cost of losing flexibility for any on-board
SLAM.

C. Runtime analysis

The on-board system was crafted to guarantee real-time
performance, keeping in mind reducing search space during
feature tracking and only detecting features for keyframes.
Fig.10 depicts the run-time histograms of Agent 1 and 2 while
processing their trajectories. They have two modes, one local-
ized within 0.01 and 0.05s associated with feature tracking
with pose estimation and the other one spread across 0.08 to
0.015s, which happens when a new keyframe is created, and
local BA is executed to refine the moving window of poses.
Unfortunately, COVINS-G does not provide a tool to report
PGO or Place recognition run-time. However, experiments

have shown that it takes approximately 400-1000ms both
procedures to be completed.

V. CONCLUSIONS

In this work, we have presented the implementation of a
collaborative visual SLAM algorithm composed of a custom
designed on-board stereo visual SLAM that leverages sparse
feature detection and fast search correspondence by Lucas
Kannade and a centralized server (COVINS-G) with a pair of
keyframe-image It is capable of fusing trajectories from differ-
ent agents by place recognition and pose graph optimization.
To test it, we designed a multi-purpose Ackermann steering
RC car with a low-level processing for driving and steering
motor control with an ESP32 and a high-level processing in
a Jetson Nano Super that communicates to the low-level and
receives sensor stream and joystick commands. We compared
our trajectory estimation against ground truth generated by
Hector SLAM with 2D LiDAR scans and reported a perfor-
mance boost of ∼30% for the translation APE. At the same
time, the rest of the metrics remain within the same value.
Our system can run in real time and align the trajectory of
several agents in parallel without extensive code changes on
the onboard stereo SLAM. As for future works, we seek to run
experiments including the landmarks in the agent map fusion
to determine how considerable their influence is and if their
addition is worth sacrificing flexibility in the framework.
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Figure 9: Optimized trajectory after alignment with the
ground-truth trajectory: a) Agent I, b) Agent II. The
heatmap represents the APE of translation.
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