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Abstract

El presente trabajo corresponde al proyecto final del curso de Robética Auténoma
(UTEC) e introduce un framework unificado para navegacién auténoma compuesto
por médulos de percepcion, localizacién, mapeo y planeamiento desarrollados en
ROS para un uso efectivo y rapido. Esta implementacién demuestra una navegacién
efectiva en el robot Turtlebot3 en escenarios cerrados como almacenes, laboratorios
y hogares tanto en simulacién (Gazebo) utilizando solo visién aun bajo la presencia
de elementos dindmicos (personas) gracias a que dos mdédulos se encargan del
mapeo, uno estdtico y otro dindmico, y al uso de dos planificadores de movimiento
para considerar tanto el mapa precargado cémo la percepcion local.

1 Introduccion

La navegacion representa el componente clave en los sistemas auténomos para poder desplazarse y
interactuar con los entornos que la rodean. Esta compuesto por los siguientes médulos: percepcion,
localizacién, mapeo, planeamiento y control. Hasta la fecha, se han realizado avances importantes
en cada médulo individualmente. No obstante, no son comunes las implementaciones completas de
sistemas de navegacion y las pocas conocidas forman parte de productos patentados lo cual no permite
su libre uso y modificacion. Por consiguiente, este trabajo busca utilizar algoritmos o paquetes del
estado del arte en cada médulo y conectarlas dentro del entorno ROS para un rapido despliéguese en
cualquier plataforma de prueba. Asi mismo, este trabajo busca ofrecer robustez de navegacion ante la
presencia de objetos dindmicos al considerarlos dentro del mapeo y planeamiento. Los algoritmos
elegidos son: ORB-SLAM 2 [7]], Octomap [5], YOLOVS [[10], A* [1] y DWA [2]. Asi mismo, esta
solucién considera un balance entre flexibilidad, eficiencia computacional y exactitud. Con el debido
seguimiento de los tipos de mensajes de ROS utilizados, se puede reemplazar cada médulo por un
algoritmo mads actual. La plataforma de pruebas fue un robot mévil Turtlebot3 Waffle-PI equipado
con una camara realsense R200 y dos entornos de simulacién en Gazebo. Por otra parte, se hizo una
implementacidén preliminar de una cdmara con las mismas prestaciones (Astra Embedded S) para
una implementacién real enfocada en el mapeo del laboratorio L201 de UTEC. Esta plataforma de
navegacion permite que robot méviles puedan ser aplicados para casos cémo:

* Monitoreo de equipos industriales en lugares con presencia de personas.
* Desplazamiento y almacenamiento de cargas en almacenes (warehouses).

» Exploracién de entornos con superficies lo suficientemente uniformes cémo tineles asfalta-
dos.
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Las siguientes secciones estan comprendidas por: Metodologia, donde se explica en detalle el
funcionamiento de cada médulo y su interaccién; Resultados, presenta el entorno de pruebas, detalles
de la implementacién y resultados cualitativos; y Conclusiones.

2 Metodologia
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Figure 1: Esquematico del framework de navegacién auténoma unificado

El programa requiere dos entradas: imagenes RGB-D y una posicién deseada. Se ha optado por
descartar cualquier medicién de LiDAR en vista que este sensor suele aumenta el costo de las
plataformas de evaluacion y que muchas de sus cualidades pueden ser obtenidas mediante una tGnica
camara RGB-D en entornos cerrados. Al inicio, la imagen Irgp.p es procesada por el algoritmo
ORB-SLAM 2 que se encarga de generar un mapa estdtico del entorno Mg y proveer de localizacién
X al médulo de planeamiento. En una rama paralela, se envia al componente RGB de la imagen 7
para detectar todas las personas en el campo de visién mediante YOLOvV8 dentro de un bounding
box. Esta regién de interés es enmascarada en la imagen de profundidad para solo utilizar esa seccién
a la hora de proyectar la profundidad en mediciones de laser virtuales para reemplazar el LiDAR.
Son estas mediciones independientes del mapa anterior las que denominados mapa dindmico. La
planificacién de movimiento recibe los dos mapas y la posicién deseada G para trazar una serie
de rutas mediante A* como planificador global y DWA como el local, el cual permite esquivar
los obstaculos no mapeados. De este apartado, se envia el camino o path P al Turtlebot mediante
comandos de velocidad.

2.1 Generacion de mapa estatico

El proceso de mapeo estdtico se consigue a través de la percepcion de imdgenes RGB-D (color y
profundidad) en distintos instantes de tiempo. Se consideré ese tipo frente a otros opciones debido
a dos motivos: 1) las cdmaras monoculares y estéreo no consiguen generar nubes de puntos lo
suficientemente densas para crear una grilla de ocupacién 2D o 3D y 2) en entornos cerrados, las
cédmaras RGB-D proveen una precisién de profundidad mucho mayor que la triangulacién en la
configuracién estéreo.

Para generar el mapa de los entornos, se debe conocer con precision la ubicacién del robot puesto
que las mediciones considerardn como sistema de referencia el desplazamiento en cada instante. Asi
mismo, la localizacién necesita de un mapa de donde pueda extraer puntos de interés o landmarks que
permite estimar y corregir su estimacién de posicion. En vista que los dos procesos son dependientes
mutuamente, se ha considera una solucion SLAM (simultaneous localization and mapping) del estado
del arte para cdmaras RGB-D.



2.2 ORB-SLAM2

Propuesto por Raul Mur-Artal y Juan D. Tardos [7], ORB-SLAM 2 ha sido el benchmark para
sistemas de odometria visual (VO) y SLAM visual puesto que al momento de su publicacién obtuvo
un balance prometedor entre su precision de localizacién y su coste computacional debido al uso
extensivo de paralelismo. Cémo se aprecia en la Fig[2] este algoritmo esta compuesto por 3 hilos o
threads: tracking, local mapping y loop closing; Su front-end esta manejado por el hilo de tracking a
través de features y descriptores ORB mientras que su back-end es el proceso de optimizacién por
grafos conocido cémo Bundle Adjustment.
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Figure 2: Esquema general de ORB-SLAM 2 [7] con sus hilos y subrutinas.

2.3 Procesamiento de mapa estatico

Para conseguir la representacion requerida para el planeamiento se necesita proyectar la nube de
puntos tridimensional en una grilla de ocupacién de la cual se pueda determinar los obstdculos. La
nube de puntos generada por ORB-SLAM 2 de por si no puede ser proyectada directamente puesto
que presenta varios puntos atipicos aparte que puede considerar puntos en el suelo cémo obstaculos.
Por ello se considera los siguientes procesamientos de nube de puntos:

* Un filtro pasaobjetos que rechaza cualquier punto que se encuentre en el rango z €
[—0.05,0.05] m. La estocacidad propia del SLAM ocasiona que algunos puntos estén
por debajo de z = 0 a pesar que el robot nunca cambie su altura.

 Un filtro RANSAC utilizando un modelo de plano para eliminar cualquier drea que corre-
sponda al suelo restante como planos inclinados fuera del rango de z del primer punto.

 Un filtro estadistico basado k-means que detecta data espuria y alejada de nubes de puntos
con centroides definidos

Esta etapa de procesamiento fue implementada utilizando la libreria PCL (Point cloud library) [9]l.

24 Octomap

Octomap [5]] es una libreria escrita en C++ tomando en mente la eficiencia y robustez para la
representacién de nubes de puntos 3D consideracién ocupacién. Por una parte, emplea Octrees
como representacion volumétrica donde un punto en el espacio es un voxel y al determinarse
que se encuentra ocupado, es dividido en ocho subvoxels. Tanto el voxel padre como el hijo se
encuentran conectados mediante un grafos para su busqueda rdpida. Por otra parte, se considera
que las mediciones de sensores cémo LiDAR o cdmaras RGB-D pueden acarrear ruido, de manera
que considera una estructura probabilistica para determina si un voxel es ocupado uno mediante una
probabilidad a priori definida por el usuario y la probabilidad de realizar un medicién en base a todos
los voxels anteriores. Después de calcular esta probabilidad, se utiliza un threshold de p = 0.5 para
discriminar la ocupacidn final del voxel.

Para este trabajo, se utilizard la proyeccién ocupacional de los octress en un mapa conocido cémo
grilla de ocupacién compuesto por tres tipos de voxels: ocupados (negro), libre (blanco) y gris (no



explorado). Esta representacién no ocupa mucho espacio y define claramente las drea por donde el
robot puede desplazarse.

2.5 Generacion de mapa dinamico

2.5.1 Maediciones de laser virtuales
2.5.2 YOLOvS

Los humanos somos capaces de captar informacién visual y procesarla, pudiendo reconocer [11]]
y diferenciar entre objetos al instante [[6]. A diferencia de nosotros, las computadoras tienen que

desarrollar algoritmos con el fin de imitar esta capacidad humana para procesar imdgenes y videos
6] 18]

Entre los modelos de red para cumplir esta labor se destaca a YOLO (You Only Look Once) por la
gran popularidad que ha obtenido en los tltimos afios debido a su alta precision [6]. La versién mds
reciente de YOLO es la version 8 (YOLOvS) [[10] la cual se destaca por obtener mayores valores de
COCO mAP, en comparacion con las otras versiones de la familia YOLO, haciendo uso de una menor
cantidad de pardmetros y menor latencia (Figura ). Esta version es capaz de realizar clasificacion,
deteccién, segmentacion, seguimiento y pose estimation [[10]. Para el presente trabajo se hard uso de
esta version para realizar deteccidn personas con el objetivo de obtener los puntos de las esquinas
de los bounding boxes formados alrededor de las personas detectadas. Ademads existen diferentes
modelos de esta versiéon como YOLOv8n, YOLOvVS8s, YOLOv8m, YOLOv8l y YOLOvS8x (Figura
) [10]]; nosotros haremos uso del primer modelo debido a que estimados que el ambiente en el que
serd probado no requerird de un gran mPA para realizar el trabajo de forma esperada, ademds que
todo el programa del robot estara corriendo en el CPU, por lo que se da prioridad al uso bajo de
recursos.
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Figure 3: Comparacién del rendimiento de distintas versiones de YOLO.
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Figure 4: Modelos de YOLOVS.

Lo que se desea con la incorporacién de la deteccién de personas es afiadir un mapa de costo dindmico
al mapa de costo estdtico existente. La deteccidn de las personas se hard haciendo uso de los frames
dados por la cdmara RGB, se realizard el procesamiento de la imagen y de detectarse una persona, se
utilizardn las coordenadas de las esquinas del bounding box (en el plano de la imagen) para hacer



una mdscara la cual enmascarara los frames entregados por la cimara de profundidad RGB-D por
donde cualquier valor fuera del bounding box serd 0 (muy lejano) (Figura ) y todo valor de obtenido
por la cdmara de profundidad serd considerado como un costo en el mapa. De esta forma es posible
trabajar los costos dindmico y estdtico independientemente sin hacer generar redundancia en los
costos obtenidos.
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Figure 5: Pipeline de la obtencién del Mapa de costo dindmico.

2.6 ROS Motion Planning

ROS Motion Planning es un paquete para ROS Noetic que incluye, en términos generales, la
localizacién, planeacién y navegacion de AGVs / AMRs mediante Lidar, principalmente para las
versiones turtlebot waffle, waffle-pi y burger. El paquete ofrece una amplia cantidad de algoritmos de
planificacién de movimiento como A*, RRT, dijkstra, D*, DWA, PID, etc. Ademads, el entorno brinda
mucha versatilidad al modificar los mapas, mundos, algoritmos y pardmetros de los planeadores. Los
principales algoritmos de planeacidn usados en este framework son el A* para la planeacién global y
DWA para la planeacion local.

2.6.1 Algoritmo A*

El algoritmo para la planificacién de movimiento que se ha escogido entre los disponibles ha sido
A-estrella (A*). Tal como es expuesto por Hart, Nilsson y Raphael [4], un algoritmo de bisqueda
deberia encontrar las nodos éptimos para expandir su arbol de ubicaciones a las que el robot puede
moverse. Con tal objetivo, se emplea una funcién de admisibilidad con la que se habilita la visita a
los potenciales nodos para que viaje el robot y escoge la opcién 6ptima de acuerdo a sus restricciones.

2.6.2 Dynamic Window Approach (DWA)

Para el planeamiento local del robot se emplea una ventana dindmica cuyo funcionamiento es
explicado por Fox, Burgard y Thrun [3]]. Los autores explican que la dindmica del robot es trabajada
directamente en el espacio de velocidades. Restringe el comando del robot a aquellos valores que son
alcanzables en intervalos cortos de tiempo para las aceleraciones que han sido limitadas. Todo esto
se realiza sobre el establecimiento de trayectorias circulares determinadas por pares de velocidad
traslacional y rotacional.

3 Resultados

3.1 Simulacion

3.1.1 Mapa estatico

En los entornos de simulacién escogidos son Turtlebot3 House y Amazon Small House (Fig [6),
ejecutuados dentro de Gazebo. Para su eleccion, se consideraron ambientes que tengan superficies
texturizadas, evitando tener colores planos, para facilitar la deteccion de caracteristicas ORB. Asi



mismo, estos deben ser entornos cerrados debido a que las mediciones de profundidad por imédgenes
RGB-D son confiables dentro de un rango de ~ 10 m.

(a) Turtlebot house (b) Amazon house

Figure 6: Entornos de simulacién house y Amazon house en Gazebo

Para el andlisis de resultados, se seguird el mismo orden del esquemadtico general visto en la Fig. [2]
empezando por el mapeo con ORB-SLAM 2. En Fig. [7] se aprecia que algoritmo considera puntos
de superficies altamente texturizadas cémo la alfombra o el rostro de una persona y bordes que se
encuentran bien definidos por el gradiente de color en la vencindad del borde mismo.

Figure 7: Visualizacién de ORB SLAM 2 donde los puntos verdes son los obtenidos en tiempo real y
los azules son los almacenados por el mapa para localizacién aislada

Ambos entornos fueron recorridos en su totalidad y consider6 revistar la posicion inicial 3 veces para
que tanto la trayectoria cémo el mapa fueran corregidos mediante loop closing para mayor fiabilidad.
El mapa generado por el algoritmo de SLAM visual se puede ver en la Fig. [§] Si bien se observa que
las paredes y esquinas que limitan el entorno tiene una densidad de puntos aceptable, hay presencia
notable de ruido entorno a estas regiones de la nube que se muestra dentro de circulos verdes. Asi
mismo, los puntos de la alfombra también han sido mapeados y si no son filtrados, serdn proyectados
por Octomap en la grilla de ocupacién cuando en realidad es un entorno libre. Para lidiar con ello, se
aplicé el procesamiento de puntos por PCL explicado en la seccién de metodologia con excepcion
del filtro RANSAC puesto que este es activado por defecto en Octomap.

A forma de comprobacién que el mapeo represente a escala el entorno de su alrededor, se realizé una
comparacion entre la nube de puntos generada por ORB-SLAM 2 mediciones del LiDAR integrado
con el Turtlebot3. En[J]se aprecia que hay una alta similitud entre las mediciones laser de las paredes
y su respectiva nube de puntos.

Después del filtrado, la nube de puntos son convertidas a Voxels mediante el Octomap considerando
una resolucién de 0.05, aparte de aplicar un filtro RANSAC para remover el suelo. Esta nueva
representacion es proyectada en el plano z = 0 y se consigue el mapa de ocupacion ya que los Voxels



Figure 8: Comparacién pre (izquierda) y post procesamiento (derecha) de la nube de puntos del mapa
por ORB-SLAM 2

Figure 9: Comparacién de localizacion y escala de nube de puntos de ORB-SLAM 2 y LiDAR

ya crea su grafo de busquedas considerando ocupacién. Los resultados de mapeo en grilla se observan
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Figure 10: Mapas de ocupacién de entornos de simulacion mediante Octomap

3.1.2 Mapa de costo dinamico

Para esta prueba se hizo uso del mundo Amazon house y se incluyé personas. Se teleopero el
turtlebot hasta llegar a estar al frente de una persona. Una vez colocado, fue posible observar las
piernas de la persona, con ello el robot indicé que una persona habia sido detectada mostrando el
correcto funcionamiento del modelo YOLOvVS. En la Figura a se muestra la imagen de la cimara de
profundidad en la cual se encuentran una persona y una mesa; en la Figura b se puede observar la
imagen dada por la cdmara de profundidad después del enmascaramiento, en esta solo se puede ver
un recuadro con la persona adentro de este (notar que no se incluye la mesa dentro de este frame); y



en la Figura c se puede apreciar la inclusién del mapa de costo dindmico, resaltando que a pesar de
que tanto la persona como la mesa son visibles por la camara de profundidad, solo la persona genera
un costo a partir de esta camara (costo dindmico), mientras que la mesa solo posee el costo estdtico
mas no el dindmico.

Figure 11: Resultados de la prueba del Mapa de costo dindmico en simulacién.

3.1.3 Planificacion

r . 4.

(a) Planeamiento con coste dindmico de per- (b) Planeamiento despues de perder deteccién de per-
sona sona

Figure 12: Resultados de planeamiento con mapa completo (esttico y dindmico)

3.2 Entorno real
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0 0 1

4 Conclusiones
* Se disené un marco de trabajo que unifica percepcion, localizacién, mapeo y planificacién
para conseguir navegacion auténoma.

* Fue aprovechada las capacidades de una cimara RGB-D para reemplazar el sensado por
LiDAR en todos las etapas del pipeline.

* Se consiguié incorporar elementos dindmicos en el mapa estatico y que fueran considerados
en la planificacién.

* Trabajos futuros: La implementacién completa del médulo, extensién utilizando ORB-
SLAM 3 con calibracién extrinseca IMU-Cémara.



(a) Instalacién de camara Astra (b) Visualizacién de imagen RGB-D (c) ORB-SLAM 2 mapeando usando
Embedded S en Turtlebot despues de montar la cdmara imdgenes de la cdmara Astra

Figure 13: Implementacién preliminar
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