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Abstract

El presente trabajo corresponde al proyecto final del curso de Robótica Autónoma
(UTEC) e introduce un framework unificado para navegación autónoma compuesto
por módulos de percepción, localización, mapeo y planeamiento desarrollados en
ROS para un uso efectivo y rápido. Esta implementación demuestra una navegación
efectiva en el robot Turtlebot3 en escenarios cerrados cómo almacenes, laboratorios
y hogares tanto en simulación (Gazebo) utilizando solo visión aun bajo la presencia
de elementos dinámicos (personas) gracias a que dos módulos se encargan del
mapeo, uno estático y otro dinámico, y al uso de dos planificadores de movimiento
para considerar tanto el mapa precargado cómo la percepción local.

1 Introducción

La navegación representa el componente clave en los sistemas autónomos para poder desplazarse y
interactuar con los entornos que la rodean. Esta compuesto por los siguientes módulos: percepción,
localización, mapeo, planeamiento y control. Hasta la fecha, se han realizado avances importantes
en cada módulo individualmente. No obstante, no son comunes las implementaciones completas de
sistemas de navegación y las pocas conocidas forman parte de productos patentados lo cual no permite
su libre uso y modificación. Por consiguiente, este trabajo busca utilizar algoritmos o paquetes del
estado del arte en cada módulo y conectarlas dentro del entorno ROS para un rápido despliéguese en
cualquier plataforma de prueba. Así mismo, este trabajo busca ofrecer robustez de navegación ante la
presencia de objetos dinámicos al considerarlos dentro del mapeo y planeamiento. Los algoritmos
elegidos son: ORB-SLAM 2 [7], Octomap [5], YOLOv8 [10], A* [1] y DWA [2]. Así mismo, esta
solución considera un balance entre flexibilidad, eficiencia computacional y exactitud. Con el debido
seguimiento de los tipos de mensajes de ROS utilizados, se puede reemplazar cada módulo por un
algoritmo más actual. La plataforma de pruebas fue un robot móvil Turtlebot3 Waffle-PI equipado
con una cámara realsense R2OO y dos entornos de simulación en Gazebo. Por otra parte, se hizo una
implementación preliminar de una cámara con las mismas prestaciones (Astra Embedded S) para
una implementación real enfocada en el mapeo del laboratorio L201 de UTEC. Esta plataforma de
navegación permite que robot móviles puedan ser aplicados para casos cómo:

• Monitoreo de equipos industriales en lugares con presencia de personas.
• Desplazamiento y almacenamiento de cargas en almacenes (warehouses).
• Exploración de entornos con superficies lo suficientemente uniformes cómo túneles asfalta-

dos.
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Las siguientes secciones están comprendidas por: Metodología, donde se explica en detalle el
funcionamiento de cada módulo y su interacción; Resultados, presenta el entorno de pruebas, detalles
de la implementación y resultados cualitativos; y Conclusiones.

2 Metodología

ORB SLAM 2

Percepción por 
cámara RGB-D

YOLOv8

A* y DWA

Localización

Goal

Path

Mapa

Proyección de 
imagen RGB-D en 

medición laser

Figure 1: Esquemático del framework de navegación autónoma unificado

El programa requiere dos entradas: imágenes RGB-D y una posición deseada. Se ha optado por
descartar cualquier medición de LiDAR en vista que este sensor suele aumenta el costo de las
plataformas de evaluación y que muchas de sus cualidades pueden ser obtenidas mediante una única
cámara RGB-D en entornos cerrados. Al inicio, la imagen IRGB-D es procesada por el algoritmo
ORB-SLAM 2 que se encarga de generar un mapa estático del entorno MS y proveer de localización
X al módulo de planeamiento. En una rama paralela, se envía al componente RGB de la imagen I
para detectar todas las personas en el campo de visión mediante YOLOv8 dentro de un bounding
box. Esta región de interés es enmascarada en la imagen de profundidad para solo utilizar esa sección
a la hora de proyectar la profundidad en mediciones de láser virtuales para reemplazar el LiDAR.
Son estas mediciones independientes del mapa anterior las que denominados mapa dinámico. La
planificación de movimiento recibe los dos mapas y la posición deseada G para trazar una serie
de rutas mediante A* cómo planificador global y DWA cómo el local, el cual permite esquivar
los obstáculos no mapeados. De este apartado, se envía el camino o path P al Turtlebot mediante
comandos de velocidad.

2.1 Generación de mapa estático

El proceso de mapeo estático se consigue a través de la percepción de imágenes RGB-D (color y
profundidad) en distintos instantes de tiempo. Se consideró ese tipo frente a otros opciones debido
a dos motivos: 1) las cámaras monoculares y estéreo no consiguen generar nubes de puntos lo
suficientemente densas para crear una grilla de ocupación 2D o 3D y 2) en entornos cerrados, las
cámaras RGB-D proveen una precisión de profundidad mucho mayor que la triangulación en la
configuración estéreo.

Para generar el mapa de los entornos, se debe conocer con precisión la ubicación del robot puesto
que las mediciones considerarán cómo sistema de referencia el desplazamiento en cada instante. Así
mismo, la localización necesita de un mapa de donde pueda extraer puntos de interés o landmarks que
permite estimar y corregir su estimación de posición. En vista que los dos procesos son dependientes
mutuamente, se ha considera una solución SLAM (simultaneous localization and mapping) del estado
del arte para cámaras RGB-D.
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2.2 ORB-SLAM 2

Propuesto por Raul Mur-Artal y Juan D. Tardos [7], ORB-SLAM 2 ha sido el benchmark para
sistemas de odometría visual (VO) y SLAM visual puesto que al momento de su publicación obtuvo
un balance prometedor entre su precisión de localización y su coste computacional debido al uso
extensivo de paralelismo. Cómo se aprecia en la Fig.2, este algoritmo esta compuesto por 3 hilos o
threads: tracking, local mapping y loop closing; Su front-end esta manejado por el hilo de tracking a
través de features y descriptores ORB mientras que su back-end es el proceso de optimización por
grafos conocido cómo Bundle Adjustment.

Figure 2: Esquema general de ORB-SLAM 2 [7] con sus hilos y subrutinas.

2.3 Procesamiento de mapa estático

Para conseguir la representación requerida para el planeamiento se necesita proyectar la nube de
puntos tridimensional en una grilla de ocupación de la cual se pueda determinar los obstáculos. La
nube de puntos generada por ORB-SLAM 2 de por sí no puede ser proyectada directamente puesto
que presenta varios puntos atípicos aparte que puede considerar puntos en el suelo cómo obstáculos.
Por ello se considera los siguientes procesamientos de nube de puntos:

• Un filtro pasaobjetos que rechaza cualquier punto que se encuentre en el rango z ∈
[−0.05, 0.05] m. La estocacidad propia del SLAM ocasiona que algunos puntos estén
por debajo de z = 0 a pesar que el robot nunca cambie su altura.

• Un filtro RANSAC utilizando un modelo de plano para eliminar cualquier área que corre-
sponda al suelo restante cómo planos inclinados fuera del rango de z del primer punto.

• Un filtro estadístico basado k-means que detecta data espuria y alejada de nubes de puntos
con centroides definidos

Esta etapa de procesamiento fue implementada utilizando la libreria PCL (Point cloud library) [9].

2.4 Octomap

Octomap [5] es una libreria escrita en C++ tomando en mente la eficiencia y robustez para la
representación de nubes de puntos 3D consideración ocupación. Por una parte, emplea Octrees
cómo representación volumétrica donde un punto en el espacio es un voxel y al determinarse
que se encuentra ocupado, es dividido en ocho subvoxels. Tanto el voxel padre cómo el hijo se
encuentran conectados mediante un grafos para su búsqueda rápida. Por otra parte, se considera
que las mediciones de sensores cómo LiDAR o cámaras RGB-D pueden acarrear ruido, de manera
que considera una estructura probabilística para determina si un voxel es ocupado uno mediante una
probabilidad a priori definida por el usuario y la probabilidad de realizar un medición en base a todos
los voxels anteriores. Después de calcular esta probabilidad, se utiliza un threshold de p = 0.5 para
discriminar la ocupación final del voxel.

Para este trabajo, se utilizará la proyección ocupacional de los octress en un mapa conocido cómo
grilla de ocupación compuesto por tres tipos de voxels: ocupados (negro), libre (blanco) y gris (no
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explorado). Esta representación no ocupa mucho espacio y define claramente las área por donde el
robot puede desplazarse.

2.5 Generación de mapa dinámico

2.5.1 Mediciones de láser virtuales

2.5.2 YOLOv8

Los humanos somos capaces de captar información visual y procesarla, pudiendo reconocer [11]
y diferenciar entre objetos al instante [6]. A diferencia de nosotros, las computadoras tienen que
desarrollar algoritmos con el fin de imitar esta capacidad humana para procesar imágenes y vídeos
[6] [8].

Entre los modelos de red para cumplir esta labor se destaca a YOLO (You Only Look Once) por la
gran popularidad que ha obtenido en los últimos años debido a su alta precisión [6]. La versión más
reciente de YOLO es la versión 8 (YOLOv8) [10] la cual se destaca por obtener mayores valores de
COCO mAP, en comparación con las otras versiones de la familia YOLO, haciendo uso de una menor
cantidad de parámetros y menor latencia (Figura ). Esta versión es capaz de realizar clasificación,
detección, segmentación, seguimiento y pose estimation [10]. Para el presente trabajo se hará uso de
esta versión para realizar detección personas con el objetivo de obtener los puntos de las esquinas
de los bounding boxes formados alrededor de las personas detectadas. Además existen diferentes
modelos de esta versión como YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l y YOLOv8x (Figura
) [10]; nosotros haremos uso del primer modelo debido a que estimados que el ambiente en el que
será probado no requerirá de un gran mPA para realizar el trabajo de forma esperada, además que
todo el programa del robot estará corriendo en el CPU, por lo que se da prioridad al uso bajo de
recursos.

Figure 3: Comparación del rendimiento de distintas versiones de YOLO.

Figure 4: Modelos de YOLOv8.

Lo que se desea con la incorporación de la detección de personas es añadir un mapa de costo dinámico
al mapa de costo estático existente. La detección de las personas se hará haciendo uso de los frames
dados por la cámara RGB, se realizará el procesamiento de la imagen y de detectarse una persona, se
utilizarán las coordenadas de las esquinas del bounding box (en el plano de la imagen) para hacer

4



una máscara la cual enmascarará los frames entregados por la cámara de profundidad RGB-D por
donde cualquier valor fuera del bounding box será 0 (muy lejano) (Figura ) y todo valor de obtenido
por la cámara de profundidad será considerado como un costo en el mapa. De esta forma es posible
trabajar los costos dinámico y estático independientemente sin hacer generar redundancia en los
costos obtenidos.

Figure 5: Pipeline de la obtención del Mapa de costo dinámico.

2.6 ROS Motion Planning

ROS Motion Planning es un paquete para ROS Noetic que incluye, en términos generales, la
localización, planeación y navegación de AGVs / AMRs mediante Lidar, principalmente para las
versiones turtlebot waffle, waffle-pi y burger. El paquete ofrece una amplia cantidad de algoritmos de
planificación de movimiento como A*, RRT, dijkstra, D*, DWA, PID, etc. Además, el entorno brinda
mucha versatilidad al modificar los mapas, mundos, algoritmos y parámetros de los planeadores. Los
principales algoritmos de planeación usados en este framework son el A* para la planeación global y
DWA para la planeación local.

2.6.1 Algoritmo A*

El algoritmo para la planificación de movimiento que se ha escogido entre los disponibles ha sido
A-estrella (A*). Tal como es expuesto por Hart, Nilsson y Raphael [4], un algoritmo de búsqueda
debería encontrar las nodos óptimos para expandir su árbol de ubicaciones a las que el robot puede
moverse. Con tal objetivo, se emplea una función de admisibilidad con la que se habilita la visita a
los potenciales nodos para que viaje el robot y escoge la opción óptima de acuerdo a sus restricciones.

2.6.2 Dynamic Window Approach (DWA)

Para el planeamiento local del robot se emplea una ventana dinámica cuyo funcionamiento es
explicado por Fox, Burgard y Thrun [3]. Los autores explican que la dinámica del robot es trabajada
directamente en el espacio de velocidades. Restringe el comando del robot a aquellos valores que son
alcanzables en intervalos cortos de tiempo para las aceleraciones que han sido limitadas. Todo esto
se realiza sobre el establecimiento de trayectorias circulares determinadas por pares de velocidad
traslacional y rotacional.

3 Resultados

3.1 Simulación

3.1.1 Mapa estático

En los entornos de simulación escogidos son Turtlebot3 House y Amazon Small House (Fig .6),
ejecutuados dentro de Gazebo. Para su elección, se consideraron ambientes que tengan superficies
texturizadas, evitando tener colores planos, para facilitar la detección de características ORB. Así
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mismo, estos deben ser entornos cerrados debido a que las mediciones de profundidad por imágenes
RGB-D son confiables dentro de un rango de ∼ 10 m.

(a) Turtlebot house (b) Amazon house

Figure 6: Entornos de simulación house y Amazon house en Gazebo

Para el análisis de resultados, se seguirá el mismo orden del esquemático general visto en la Fig. 2
empezando por el mapeo con ORB-SLAM 2. En Fig. 7, se aprecia que algoritmo considera puntos
de superficies altamente texturizadas cómo la alfombra o el rostro de una persona y bordes que se
encuentran bien definidos por el gradiente de color en la vencindad del borde mismo.

Figure 7: Visualización de ORB SLAM 2 donde los puntos verdes son los obtenidos en tiempo real y
los azules son los almacenados por el mapa para localización aislada

Ambos entornos fueron recorridos en su totalidad y consideró revistar la posición inicial 3 veces para
que tanto la trayectoria cómo el mapa fueran corregidos mediante loop closing para mayor fiabilidad.
El mapa generado por el algoritmo de SLAM visual se puede ver en la Fig. 8. Si bien se observa que
las paredes y esquinas que limitan el entorno tiene una densidad de puntos aceptable, hay presencia
notable de ruido entorno a estas regiones de la nube que se muestra dentro de círculos verdes. Así
mismo, los puntos de la alfombra también han sido mapeados y si no son filtrados, serán proyectados
por Octomap en la grilla de ocupación cuando en realidad es un entorno libre. Para lidiar con ello, se
aplicó el procesamiento de puntos por PCL explicado en la sección de metodología con excepción
del filtro RANSAC puesto que este es activado por defecto en Octomap.

A forma de comprobación que el mapeo represente a escala el entorno de su alrededor, se realizó una
comparación entre la nube de puntos generada por ORB-SLAM 2 mediciones del LiDAR integrado
con el Turtlebot3. En 9 se aprecia que hay una alta similitud entre las mediciones láser de las paredes
y su respectiva nube de puntos.

Después del filtrado, la nube de puntos son convertidas a Voxels mediante el Octomap considerando
una resolución de 0.05, aparte de aplicar un filtro RANSAC para remover el suelo. Esta nueva
representación es proyectada en el plano z = 0 y se consigue el mapa de ocupación ya que los Voxels
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Figure 8: Comparación pre (izquierda) y post procesamiento (derecha) de la nube de puntos del mapa
por ORB-SLAM 2

Figure 9: Comparación de localización y escala de nube de puntos de ORB-SLAM 2 y LiDAR

ya crea su grafo de búsquedas considerando ocupación. Los resultados de mapeo en grilla se observan
en 10.

(a) Turtlebot house (b) Amazon house

Figure 10: Mapas de ocupación de entornos de simulación mediante Octomap

3.1.2 Mapa de costo dinámico

Para esta prueba se hizo uso del mundo Amazon house y se incluyó personas. Se teleoperó el
turtlebot hasta llegar a estar al frente de una persona. Una vez colocado, fue posible observar las
piernas de la persona, con ello el robot indicó que una persona había sido detectada mostrando el
correcto funcionamiento del modelo YOLOv8. En la Figura a se muestra la imagen de la cámara de
profundidad en la cual se encuentran una persona y una mesa; en la Figura b se puede observar la
imagen dada por la cámara de profundidad después del enmascaramiento, en esta solo se puede ver
un recuadro con la persona adentro de este (notar que no se incluye la mesa dentro de este frame); y
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en la Figura c se puede apreciar la inclusión del mapa de costo dinámico, resaltando que a pesar de
que tanto la persona como la mesa son visibles por la cámara de profundidad, solo la persona genera
un costo a partir de esta cámara (costo dinámico), mientras que la mesa solo posee el costo estático
mas no el dinámico.

Figure 11: Resultados de la prueba del Mapa de costo dinámico en simulación.

3.1.3 Planificación

(a) Planeamiento con coste dinámico de per-
sona

(b) Planeamiento despues de perder detección de per-
sona

Figure 12: Resultados de planeamiento con mapa completo (estático y dinámico)

3.2 Entorno real

K =

[
1734.154 0 1004.148

0 1742.898 499.833
0 0 1

]
, p = [−0.024 −0.091 −0.005 0.01 0] (1)

4 Conclusiones
• Se diseñó un marco de trabajo que unifica percepción, localización, mapeo y planificación

para conseguir navegación autónoma.
• Fue aprovechada las capacidades de una cámara RGB-D para reemplazar el sensado por

LiDAR en todos las etapas del pipeline.
• Se consiguió incorporar elementos dinámicos en el mapa estático y que fueran considerados

en la planificación.
• Trabajos futuros: La implementación completa del módulo, extensión utilizando ORB-

SLAM 3 con calibración extrínseca IMU-Cámara.
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(a) Instalación de cámara Astra
Embedded S en Turtlebot

(b) Visualización de imagen RGB-D
despues de montar la cámara

(c) ORB-SLAM 2 mapeando usando
imágenes de la cámara Astra

Figure 13: Implementación preliminar
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