UTEC m MTO0011 - Robdtica Avanzada

UNIVERSIDAD DE IGENIERI 2022-2
Y TECNOLOGIA -

Entrenamiento de agente en entorno Lunar
Lander de libreria Gym

Marcelo Contreras, Alejandro Del Rio, Mauricio Rivera y Mirella Rivas

Noviembre del 2022

1. Introduccion

El proyecto que se desarrolla en el presente informe tiene por objetivo encontrar la politica
que maximice la recompensa otorgada por el entorno de Lunar Lander de la libreria gym [I].
El objetivo del entorno es aterrizar una nave espacial en un area delimitada por dos banderas
en el menor tiempo posible. Fueron utilizadas dos técnicas de Reinforcement Learning para
la obtencion de la politica, las cuales fueron: Deep Q Reinforcement learning y Tile Coding.
Los resultados obtenidos por ambos métodos seran comparados y se discutira las ventajas
de implementacion de cada uno.

2. Ambiente de Simulacion

El ambiente con el que se esta trabajando en este proyecto es el Lunar Lander-v2. Este
ambiente, como lo menciona [I], sirve principalmente para realizar optimizacién de trayecto-
ria de una nave que tiene que aterrizar entre dos objetivos. Esto se puede observar de manera
més especifica en la figura

Figura 1: Ambiente de simulacién de LunarLander-v2. Obtenido de [I]

Dentro de la documentacién de gym se explica qué tipo de acciones y estados se disponen
para el usuario. Las acciones son 4 del tipo discretas y estan conformadas por: no hacer nada,
propulsor izquierdo, propulsor derecho y propulsor principal. Por otro lado, los estados son
del tipo continuo y es ahi donde recae la razén por la cual se utilizan los métodos mencionados
en la introduccién. Los estados u observaciones de este entorno representan la posicion z,y,
el angulo 6, las respectivas derivadas de las anteriores variables y dos valores booleanos para
cada pata de la nave que indica contacto con el suelo.

Ambos espacios se resumen en la tabla

Espacio de accién Discreto[int,4]
Espacio de observacién [float,8]
Limite superior de observacion [1.5 1.5 5. 5.3.14 5. 1. 1
Limite inferior de observacién | [-1.5 -1.5 -5. -5. -3.14 -5 0. 0.]

Cuadro 1: Descripciéon del entorno

Las recompensas que puede dar el entorno varian segun el estado en el que se encuentre
la nave. En primer lugar, si la nave llega a la zona de aterrizaje y se detiene se tienen de
+100 a 4+140 puntos. Si se sale de la zona luego de aterrizar, se pierde la recompensa. En
segundo punto, si la nave choca se penaliza con -100 puntos, pero si se detiene puede llegar
a obtener 100 puntos. En tercer lugar, cada pata, al tener contacto con el suelo, recibe un
bono de +10 puntos. Finalmente, el accionamiento del motor principal es castigado con -0.3
por cada frame donde se ejecute y de manera similar pasa para los motores de los costados
con -0.03 de penalizacién. Al terminar todo el proceso y llegar a la zona de aterrizaje, la
recompensa final es de 200 puntos.

Existen tres condiciones de parada para este entorno:

s La nave se choca

= La nave sale fuera de los limites del frame que estan conformados por un cuadrado de
(1,1)

= La nave no es accionada y por lo tanto, no se mueve al iniciar el programa.

3. Metodologia

3.1. Diferencias temporales y Q-learning

Como el objetivo es encontrar la politica que maximice la recompensa esperada, es nece-
sario encontrar la funcién de estado-accién que contenga esta politica en si. Existen diferentes
formas de ir actualizando esta funcién de valor de forma 6ptima considerando las recompen-
sas que ofrece el entorno. Dentro del estado de arte se ha tenido un alto interés en la técnica
de Q-learning, la cual es una extensién de diferencias temporales (TL). Este ultimo algoritmo
no tiene que esperar a que todo el episodio termine para actualizar, sino que puede hacerlo en
cada conjunto (estado,accién) considerando asi la influencia del pasado en la actualizacién.

Asi mismo, no necesita un modelo matematico del entorno sobre el cual trabajar. La férmula
que rige a TL para la obtencién de politicas que suele conocerse como SARSA es igual a:

Q(Sp.Ar) — Q(Si-Ar) + a(Riy1 + vQ(Se1. A1) — Q(Se.Ar))

donde « determina la ponderacién de la actualizacién y + determina la influencia del
conjunto (estado,accién) del futuro.

La propuesta del Q-learning sobre DT es siempre escoger la recompensa asociada al estado
Si11 para todas sus acciones posibles en el componente de actualizacién. De esta forma se
asegurar que el agente tenga una optimizaciéon méas rapida mientras sigue considerando la
informacion temporal. Por lo tanto, la férmula Q-learning tendra forma de:

Q(S1.Ay) <+ Q(Sp.Ay) + a(Ryyr + vmfmx Q(Str1-a) — Q(St.Ay)) (1)

Por otra parte, al inicio de cada episodio se debe samplear una accién que se encarga de
predecir la siguiente recompensa y estado. Esto sampleo se realizaréd siguiendo un esquema
e-greedy donde existe una probabilidad de sampleo asociada a la accion que maxima la
recompensa para un estado en particular y otra probabilidad para las demés acciones. Esta
ultima probabilidad puede ser actualizada por un valor de decaimiento y en si se suele
disminuir conforme avanza la simulacién. De esta forma, se da la oportunidad de explorar
primero el espacio de acciones y luego refinar los resultados para asi asegurar la maxima
convergencia posible. Su conjunto de probabilidades del esquema e-greedy esta dado por:

< . para el resto de d's

r(als) = {1—64—% . st a = argmax, Q(S.a)
N

La serie de pasos que se deben ejecutar para el Q-learning puede ser resumido en el
siguiente pseudocodigo:

Algorithm 1: Q-learning
Input : politica inicial 7,e,c, cantidad de episodios
Output: Funcién de valor Q
Inicializar la funcién Q;
for i in total episodios do

€ =€
Obtener estado inicial Sp;
t =0;

while S; no es terminal do
Escoger accién A; de politica Q siguiendo el esquema e-greedy;
Observar Ry 1y S;i1 al usar Ay;
Q(Si-Ay) + Q(Si-Ap) + a(Rip1 + yméx, Q(Siy1.a) — Q(SiAr));
t=1t+ 1;

end

end

El algoritmo de Q-learning es utilizado tanto dentro su version Deep-Q-learning como en
Tile Coding. La diferencia radica en que Tile Coding aproxima el espacio de estados para

tener una funcién de valor Q tabular mientras que la formulacién Deep busca aproximar la
funcién de forma continua a través de una red neuronal donde se actualice sus pesos en cada
batch.

3.2. Deep Q-Learning

En este enfoque, la funcion de valor Q es aproximada por una red neuronal que para
proposito de este proyecto es del tipo MLP (Multi Layer percepetron) o mejor conocida
como Dense, ya que se las entradas(estados) y salidas(acciones) de esta red son vectores.
Dentro del entrenamiento del agente, se tendrd que enviar un par (estado, accién) donde
la red debe predecir lo mejor posible la accion éptima para el estado dado. Por lo tanto,
nos encontramos con una red regresora. Segun se consiga este objetivo, se actualizaran los
pesos dentro de la red segiin una funciéon de costo y un optimizador de eleccién variada. La
estructura de una red MLP se puede observar en [2]

Input States

Each output
node represents
an action

The value inside
an output node
is the action’s
g-value

Figura 2: Esquema de red neuronal de Deep Q-learning obtenido de [2]

Las ventajas que ofrece el Deep Q-learning es el hecho de que es un aproximador de
funciones generalizado en donde los pesos se combinan con las entradas de forma lineal pero
se les aplica un componente de rectificacion no-lineal que permite tener una actualizacion
simple pero que se adapta a muchos casos. Asimismo, el marco de trabajo del Deep Learning
se ha expandido mucho en los ltimos anos y se ha vuelto mas facil la implementacién de
redes de pequenas dimensiones mediante librerias como Torch o Tensorflow.

Sin embargo, las desventajas es que se debe disenar adecuadamente la red aproximadora
y se debe tunear una serie de parametros. Adicionalmente, el tiempo de entrenamiento es
considerablemente mayor al de Tile Coding. Para poder obtener una gama de resultados,
este trabajo ha realizado miltiples simulaciones con distintos valores de learning rate para
la red que determinan que tan rapido se desea que la red aprenda.

La red en cuestién que se ha disenado a consideracion los resultados de los repositorios
de [3, 4] y esta compuesta por la siguiente configuracién realizada en TensorFlow.

Red Descripcion
Input Input.shape = (,8)
Capa 1 Dense.layer(128), Activacién = RELU
Capa 2 Dense.layer(64), Activaciéon = RELU
Output Dense.layer(4). Activacién = Linear
Optimizador RMSprop con loss = MSE
Batch-size 64
Learning-rate Variable

Cuadro 2: Configuracién de red neuronal

Parametros de RL | Valor
v 0.99
€ 0.5
€decay 0.998
0" 1

Cuadro 3: Parametros de Deep Q-learning

Finalmente cémo detalle, el enfoque Deep Q-learning necesita almacenar varios pares
(estado,accién) antes de entrenar y hace uso de lo que se conoce como action-replay que es
una memoria desde donde se samplea el par mencionado hasta conseguir un nimero dado
por el batch-size y recién este conjunto se envia a la red para entrenar.

Con la red disenada, los hiper-parametros escogidos, la funcién de actualizacion, e-greedy
y el action replay, se tienen todos los elementos listos para ejecutar el Deep Q-learning

3.3. Tile Coding

El algoritmo de Deep Q-Learning descrito en la seccién anterior nos permite trabajar con
los valores continuos de los estados. Sin embargo, existen métodos que permiten discretizar
este espacio continuo de manera que se pueda aplicar Q-Learning convencional. Para este
trabajo se utilizo el algoritmo de Tile Coding.

El algoritmo de Tile Coding consiste en aplicar una serie de tilings o cuadriculas de
tamano uniforme al espacio continuo de los estados. Usar varias cuadriculas permite mantener
la discretizacion precisa sin comprometer mucho el costo computacional.

———Tiling 1 —

liling 2 JSSNRG i AV iy A i QN I G
Tiling3 1 i E l
— | | T
: Tiling 4 L [JORCAIA A1 R T TR]
Continuous N } : : - Four active
2D state | : T ; - tiles/features
™~ :“ i ’: 1 _:_ I || overlap the point
pac w = 1 and are used to
Point in L~ T] represent it
state space ! : : e
to be (AR 6 I A BRI O

represented

Figura 3: Ejemplo de discretizaciéon usando Tile Coding en 2 dimensiones.

Para la aplicacién del Lunar Lander, los estados consisten en vectores de 8 valores: x,
Yy, T, v, 0, 0 y 2 booleanos que indican si cada una de las patas tocaron el piso. Se aplico
el algoritmo a los 6 valores continuos y se agregd un indice que indique el estado de los 2
booleanos.

El ntimero de tilings y la cantidad de tiles por cada lado fueron definidas en base al
limite de almacenamiento que permite Python en una variable. Esto se debié a que se esta
trabajando con un espacio hexadimensional, lo que aumenta enormemente el nimero de
estados unicos que se pueden definir. Es necesario contar con todas las variables pues todas
determinan el efecto que tendra una determinada accién en el siguiente estado, como el
angulo € por ejemplo, del cual depende que el efecto real de encender los propulsores.

Mediante prueba y error, se determiné que 2 tilings y 4 tiles eran valores computacional-
mente manejables. De esta manera, la tabla Q tiene dimensiones [4914, 9829, 4, 4], conside-
rando las 4 posibles acciones. Esto da un total de 772 795 296 estados-accién.

Para el entrenamiento del modelo se plantea usar los siguientes parametros:

Parametro | Valor
v 0.99
€ 0.5
€decay 0.0005
o 0.005

Cuadro 4: Parametros de Q-Learning con el algoritmo de Tile Coding

4. Resultados

Para la ejecucion de ambos modelos se utilizaron el entorno de Colab haciendo uso de
su GPU que por defecto es una NVIDIA Tesla T4, y una laptop para correr el programa
de forma local (se resalta que este ultimo también se utilizé para realizar el renderizado del
cohete utilizando el mejor modelo, dado que este no podia ser ejecutado en Colab).

4.1. Deep Q-Learning

Como los resultados finales de esta metodologia dependen de un tunning adecuado de los
hiper parametros, se optd por realizar una serie de simulaciones probando distintos valores
de learning-rate para luego ejecutar la red con la configuracién que dio mejores resultados
por una cantidad mayor de episodios.

De este primer conjunto de pruebas se obtuvieron los siguientes resultados:

Resultados de Deep Q learning

50

-100

mpensa

-150

—200

—250

Figura 4: Simulacion para distintos valores de Learning Rate

Dentro de este conjunto, el valor Ir = 0.001 obtuvo los mejores resultados con una re-
compensa pico de 50 y una recompensa final de 5 a partir del valor inicial de -175. Se resalta
que es probable que las otros valores también pudieran haber dado mejores o peores resul-
tados para una mayor cantidad de episodios. Sin embargo, el entorno de Colab restringio la
cantidad de tiempo de simulacion y este también esta afectado por el learning rate en si. Asi
mismo, si se deseaba mejorar aun mas la recompensa final, se pudo haber hecha una serie de
combinatorias con otros hiper-pardmetros cémo v o el valor inicial de €, considerando que los
tiempos de simulacion aumentaran considerablemente debido a las combinaciones posibles.

En [5 se puede observar a mayor detalle los resultados con Ir = 0.001 en donde se aplic
un filtro promediador de cada 10 muestras y la simulacién se extendié hasta 150 episodios,
llegando hasta una recompensa pico de 150 y un valor final de 100. Este modelo entrenado
fue exportado en un archivo de formato .h5 que puede ser nuevamente cargado con el entorno
y fue con él cual se realizé6 un video mostrando los resultados del renderizado en donde el
Lunar Lander llegaba a aterrizar dentro de su area limite sin desviarse considerablemente o
estrellarse. Este fue el video presentado durante la exposicion del presente proyecto [en donde
se consiguié una recompensa final de 236.77.

Rendimiento de aprendizaje

200 1

100 - \

=100 ~

Recompensa

—200 1

=300 +

-400 -

0 0 4 60 B0 100 120 140
Episodios

Figura 5: Detalle del resultado de entrenamiento con tasa de aprendizaje de 0.001

Adicionalmente, también se realiz6 una nueva simulacién con la misma configuracion
anterior y se llegd actualizar la funcién de valor Q para 200 episodios consiguiendo asi un
valor pico de 150 para la recompensa y un valor final de 98. Esto indicaria, que la politica
puede seguir mejorando mientras se vaya aumentando la cantidad de episodios y asi conseguir
un mejor desempeno del agente.

Simulacién final con Ir = 0.001

150

100

Recompensa

Episadios

Figura 6: Simulacion Final con lr=0.001

4.2. Tile Coding

El recurso computacional disponible nos permitié realizar el entrenamiento de varios
modelos al mismo tiempo. En el caso particular de Tile Coding, el entrenamiento tomo
28 minutos. En la figura [7] se observa una gréfica de la recompensa promediada cada 100
episodios.

Rendimiento de aprendizaje

=100

Recompensa

=120

~140 -

—160

0 20 40] 80 100
Episodios

Figura 7: Recompensa obtenida con el algoritmo de Tile Coding.

Si bien la recompensa tiene una tendencia incremental a medida pasan los episodios, esta
no llegd a tener valores positivos. Esto se debe a las dimensiones de la tabla Q. Cémo se
menciond en la seccion anterior, esta tiene un total de 772 795 296 estados-accién. Después
del entrenamiento se evalu6 cuantos de estos estados habian sido visitados y sus valores mo-
dificados. Se encontré que solo 5226 estados tinicos habian sido visitados. De esta manera,
la gran mayoria de estados no han sido modificados y siguen teniendo un valor inicial de 0.
De esta manera, si el agente llega a un estado al que nunca antes a entrado, no va a tener
ninguna informacion de qué accién tomar. La etapa de exploracion se vuelve entonces mucho
mas importante, sin embargo las dimensiones de la tabla Q no permiten completar el entre-
namiento en un rango razonable de tiempo. Para reducir estas dimensiones, se podria realizar
un tile coding adaptativo, dando mas importancia a los estados donde es mas probable que
esté el agente.

5. Conclusiones

= Se logré conseguir la politica éptima que maximiza la recompensa y que logro llevar el
cohete a la posicién deseada sin necesidad de hacer la eleccién de features que describan
mejor la relacién accién-estado mediante el Deep Q-learning.

= Entre los cuatro valores de tasa de aprendizaje evaluados, se concluye que el valor
optimo es de 0.001. Es crucial la correcta elecciéon de hiper parametros para obtener
un buen rendimiento y para no requerir a una gran cantidad de episodios para el
entrenamiento.

= No fue ideal usar Tile Coding para el modelo que considera muchas variables pues el
numero de estados accién aumenta exponencialmente con cada dimensién. No es un
método escalable. Se recomienda el uso de un Tile Coding adaptativo que pueda tener

una grilla que samplee de forma mas “inteligente” el espacio de estados sin sobreutilizar
el recurso de memoria.

Referencias

1] Gym Documentation. Lunar Lander. Recuperado de
https://www. gymlibrary. dev/environments/box2d /lunar,ander /

2] Verma S (2019). Train Your Lunar-Lander — Reinforcement Learning —

OpenAIGYM. Recuperado de https://shiva-verma.medium.com/solving-lunar-lander-
openaigym-reinforcement-learning-785675066197

Fakemonkl. Github. Reinforcement-Learning-Lunarpander. Recuperadodehttps
//github.com/ fakemonkl/Rein forcement — Learning —
Lunarpander /blob/master | Lunarander.py

Wang, M. (2020). Deep @Q-Learning Tutorial: minDQN. Recuperado de
https://towardsdatascience.com/deep-q-learning-tutorial-mindgn-2a4c855abffec

10

	Introducción
	Ambiente de Simulación
	Metodología
	Diferencias temporales y Q-learning
	Deep Q-Learning
	Tile Coding

	Resultados
	Deep Q-Learning
	Tile Coding

	Conclusiones

